1.Construction and in vitro osteogenic activity study of magnesium-strontium co-doped hydroxyapatite mineralized collagen
WANG Meng ; SUN Yifei ; CAO Xiaoqing ; WEI Yiyuan ; CHEN Lei ; ZHANG Zhenglong ; MU Zhao ; ZHU Juanfang ; NIU Lina
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):15-28
Objective:
To investigate the efficacy of magnesium-strontium co-doped hydroxyapatite mineralized collagen (MSHA/Col) in improving the bone repair microenvironment and enhancing bone regeneration capacity, providing a strategy to address the insufficient biomimetic composition and limited bioactivity of traditional hydroxyapatite mineralized collagen (HA/Col) scaffolds.
Methods:
A high-molecular-weight polyacrylic acid-stabilized amorphous calcium magnesium strontium phosphate precursor (HPAA/ACMSP) was prepared. Its morphology and elemental distribution were characterized by high-resolution transmission electron microscopy (TEM) and energy-dispersive spectroscopy. Recombinant collagen sponge blocks were immersed in the HPAA/ACMSP mineralization solution. Magnesium-strontium co-doped hydroxyapatite was induced to deposit within collagen fibers (experimental group: MSHA/Col; control group: HA/Col). The morphological characteristics of MSHA/Col were observed using scanning electron microscopy (SEM). Its crystal structure and chemical composition were analyzed by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. The mineral phase content was evaluated by thermogravimetric analysis. The scaffold's porosity, ion release, and in vitro degradation performance were also determined. For cytological experiments, CCK-8 assay, live/dead cell staining, alkaline phosphatase staining, alizarin red S staining, RT-qPCR, and western blotting were used to evaluate the effects of the MSHA/Col scaffold on the proliferation, viability, early osteogenic differentiation activity, late mineralization capacity, and gene and protein expression levels of key osteogenic markers [runt-related transcription factor 2 (Runx2), collagen type Ⅰ (Col-Ⅰ), osteopontin (Opn), and osteocalcin (Ocn)] in mouse embryonic osteoblast precursor cells (MC3T3-E1).
Results:
HPAA/ACMSP appeared as amorphous spherical nanoparticles under TEM, with energy spectrum analysis showing uniform distribution of carbon, oxygen, calcium, phosphorus, magnesium, and strontium elements. SEM results of MSHA/Col indicated successful complete intrafibrillar mineralization. Elemental analysis showed the mass fractions of magnesium and strontium were 0.72% (matching the magnesium content in natural bone) and 2.89%, respectively. X-ray diffraction revealed characteristic peaks of hydroxyapatite crystals (25.86°, 31°-34°). Infrared spectroscopy results showed characteristic absorption peaks for both collagen and hydroxyapatite. Thermogravimetric analysis indicated a mineral phase content of 78.29% in the material. The scaffold porosity was 91.6% ± 1.1%, close to the level of natural bone tissue. Ion release curves demonstrated sustained release behavior for both magnesium and strontium ions. The in vitro degradation rate matched the ingrowth rate of new bone tissue. Cytological experiments showed that MSHA/Col significantly promoted MC3T3-E1 cell proliferation (130% increase in activity at 72 h, P < 0.001). MSHA/Col exhibited excellent efficacy in promoting osteogenic differentiation, significantly upregulating the expression of osteogenesis-related genes and proteins (Runx2, Col-Ⅰ, Opn, Ocn) (P < 0.01).
Conclusion
The MSHA/Col scaffold achieves dual biomimicry of natural bone in both composition and structure, and effectively promotes osteogenic differentiation at the genetic and protein levels, breaking through the functional limitations of pure hydroxyapatite mineralized collagen. This provides a new strategy for the development of functional bone repair materials
2.Bioinformatics Reveals Mechanism of Schisandrin B in Inhibiting Ferroptosis to Ameliorate Methionine and Choline Deficiency-induced Fatty Liver Disease in Mice
Zhifeng ZHU ; Wenting LI ; Yongjun CAO ; Yuanyuan LIN ; Yifei LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):74-83
ObjectiveNonalcoholic fatty liver disease (NAFLD) is a metabolic stress liver injury. Ferroptosis is involved in the occurrence and development of NAFLD. Exploring the efficacy and mechanism of schisandrin B in treating NAFLD facilitates the development of strategies for the prevention and treatment of NAFLD. MethodsThe molecular structure of schisandrin B was obtained by searching against PubChem, and the related targets were predicted by SwissTargetPrediction. The active ingredients and their targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the high-throughput experiment- and reference-guide database of traditional Chinese medicine (HERB). GeneCards and FerrDb were searched for the targets of NAFLD and ferroptosis. The common targets were taken as the core targets, and the protein-protein interaction network of the core targets was established. DAVID was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Finally, molecular docking was performed between schisandrin B and core targets, and the binding energy was calculated. C57BL/6 mice were fed with a methionine and choline-deficiency (MCD) diet for the modeling of NAFLD. Mice were randomized into normal, model, positive drug (essentiale), and low- and high-dose schisandrin B groups. The body mass and liver index of mice were measured after drug administration. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum and those of total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), glutathione (GSH), and Fe2+ in the liver homogenate were measured by biochemical assay kits. The pathological changes of the liver tissue were observed by hematoxylin-eosin (HE) and red oil O staining. Enzyme-linked immunosorbent assay was employed to determine the levels of interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and 4-hydroxynonenal (4-HNE) in the serum. Western blotting and real-time PCR were employed to determine the protein and mRNA levels, respectively, of solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member 2 (SLC3A2), glutathione peroxidase 4 (GPX4), transferrin, and ferritin heavy chain (FTH) in the liver tissue. ResultsA total of 2 370, 2 547, and 1 451 targets of schisandrin B, NAFLD, and ferroptosis were obtained, in which 90 common targets were shared by the three. Enrichment analyses predicted 505 GO terms and 92 KEGG pathways. Molecular docking suggested that schizandrin B had strong binding affinity with the key targets of ferropstosis (SLC7A11 and SLC3A2). Animal experiments showed that schizandrin B significantly decreased the liver index, lowered the levels of ALT, AST, TC, TG, IL-6, IL-1β, and TNF-α, alleviated hepatocyte ballooning and inflammatory cell infiltration, and reduced lipid accumulation in the liver of NAFLD mice. In addition, schisandrin B significantly lowered the levels of MDA, 4-HNE, and Fe2+, elevated the level of GSH, up-regulated the protein and mRNA levels of SLC7A11, SLC3A2, and GPX4, and down-regulated the protein and mRNA levels of transferrin in the liver tissue. ConclusionSchisandrin B can alleviate NAFLD by inhibiting ferroptosis in hepatocytes.
3.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance.
4.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance.
5.Mechanism of core acupoints of acupuncture for polycystic ovary syndrome based on data mining and network acupuncture medicine.
Xinye GAO ; Qianhan LIU ; Yifei WANG ; Tingyuan YANG ; Wenci ZHANG ; Can LIU ; Shuxiu ZHU ; Lei ZHANG
Chinese Acupuncture & Moxibustion 2025;45(12):1846-1858
OBJECTIVE:
To analyze the acupoint selection patterns and core prescriptions of acupuncture for polycystic ovary syndrome (PCOS) using data mining, and to explore the molecular mechanisms of core acupoints through network acupuncture medicine.
METHODS:
The randomized controlled trials (RCTs) on acupuncture for PCOS published from January 1, 2004 to July 21, 2024 were retrieved from CNKI, VIP, Wanfang, PubMed, and Web of Science databases. R software (version 4.4.0) was used for acupoint frequency and association rule analysis to identify core acupoint prescriptions. Potential targets were predicted via the STITCH and Swiss Target Prediction databases, and a "core prescription-active compounds-targets- PCOS" network was constructed. Cytoscape 3.7.1 was applied to build protein-protein interaction (PPI) networks of potential targets of core acupoint prescriptions. Key therapeutic targets were subjected to gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses using the DAVID and Microbioinformatics platforms.
RESULTS:
A total of 176 RCTs were included, covering 208 prescriptions and 89 acupoints. The five most frequently used acupoints were Guanyuan (CV4), Sanyinjiao (SP6), Zigong (EX-CA1), Zusanli (ST36) and Zhongji (CV3). Association rule analysis yielded 13 core acupoint combinations, with Guanyuan (CV4), Sanyinjiao (SP6), Zigong (EX-CA1) and Zusanli (ST36) as the core prescription. Twenty-seven active compounds were involved, with 852 potential therapeutic targets, among which 208 targets overlapped with PCOS-related targets. Network acupuncture medicine analysis suggested that the core prescription may act through targets such as estrogen receptor 1 (ESR1), proto-oncogene tyrosine-protein kinase Src (SRC), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor gamma (PPARG), and RAC-alpha serine/threonine-protein kinase (AKT1). GO and KEGG analyses indicated that the main pathways included the hypoxia-inducible factor 1 (HIF-1) signaling pathway, phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling pathway, and advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signaling pathway, involving processes such as signal transduction, receptor complex formation, and cytokine activity.
CONCLUSION
The core acupoint prescription for PCOS might exert therapeutic effects through multiple targets and pathways, providing a theoretical basis for mechanistic research on acupoint prescriptions.
Humans
;
Acupuncture Therapy
;
Data Mining
;
Acupuncture Points
;
Polycystic Ovary Syndrome/metabolism*
;
Female
;
Protein Interaction Maps
;
Randomized Controlled Trials as Topic
6.Transplacental digoxin treatment for fetal supraventricular arrhythmias: Insights from Chinese fetuses.
Chuan WANG ; Li ZHAO ; Shuran SHAO ; Haiyan YU ; Shu ZHOU ; Yifei LI ; Qi ZHU ; Xiaoliang LIU ; Hongyu DUAN ; Hanmin LIU ; Yimin HUA ; Kaiyu ZHOU
Chinese Medical Journal 2025;138(12):1499-1501
7.Characterization of preclinical radio ADME properties of ARV-471 for predicting human PK using PBPK modeling.
Yifei HE ; Chenggu ZHU ; Peng LEI ; Chen YANG ; Yifan ZHANG ; Yuandong ZHENG ; Xingxing DIAO
Journal of Pharmaceutical Analysis 2025;15(5):101175-101175
Proteolysis-targeting chimeras (PROTACs) represent a promising class of drugs that can target disease-causing proteins more effectively than traditional small molecule inhibitors can, potentially revolutionizing drug discovery and treatment strategies. However, the links between in vitro and in vivo data are poorly understood, hindering a comprehensive understanding of the absorption, distribution, metabolism, and excretion (ADME) of PROTACs. In this work, 14C-labeled vepdegestrant (ARV-471), which is currently in phase III clinical trials for breast cancer, was synthesized as a model PROTAC to characterize its preclinical ADME properties and simulate its clinical pharmacokinetics (PK) by establishing a physiologically based pharmacokinetics (PBPK) model. For in vitro-in vivo extrapolation (IVIVE), hepatocyte clearance correlated more closely with in vivo rat PK data than liver microsomal clearance did. PBPK models, which were initially developed and validated in rats, accurately simulate ARV-471's PK across fed and fasted states, with parameters within 1.75-fold of the observed values. Human models, informed by in vitro ADME data, closely mirrored postoral dose plasma profiles at 30 mg. Furthermore, no human-specific metabolites were identified in vitro and the metabolic profile of rats could overlap that of humans. This work presents a roadmap for developing future PROTAC medications by elucidating the correlation between in vitro and in vivo characteristics.
8.A proteomics research on metabolism-related proteins in female androgenetic alopecia
Ji’an WANG ; Jinran LIN ; Haiyang LI ; Kai YANG ; Chunya NI ; Yue ZHANG ; Zheng LI ; Yifei ZHU ; Qingmei LIU ; Wenyu WU
Chinese Journal of Plastic Surgery 2024;40(1):46-55
Objective:To investigate the metabolism-related proteins and their presence in the plasma of female androgenetic alopecia (FAGA) patients.Methods:From March 2021 to March 2023, FAGA patients aged 18-50 (FAGA group) and healthy women (HC group) were recruited from the Dermatology Outpatient Department of Huashan Hospital. 3 ml of peripheral venous blood was collected from each participant and centrifuged to obtain plasma. Olink proteomics analysis was performed on the collected plasma, differentially expressed proteins were screened with R language, the diagnostic accuracy of the differentially expressed proteins was assessed using receiver operating characteristic (ROC) curve. Gene ontology (GO) analysis was performed on differentially expressed proteins. Immunofluorescence analysis on hair follicles in the parietal region of the FAGA group and the occipital region of the HC group was performed to validate the differentially expressed proteins identified. SPSS 25.0 software was used to analyze the data, with normal distribution metric data represented by Mean±SD. Student’s t-test was used to compare the basic information of two groups of subjects and the relative fluorescence intensity of differentially expressed proteins in hair follicles. Pearson correlation analysis was performed on plasma metabolism-related proteins and the basic information of subjects. P<0.05 indicates a statistically significant difference. Results:Sixty-one cases were included in the FAGA group, with an average age of (33.8±7.4) years and an onset age of (29.5±7.8) years. Among them, 38 cases were mild FAGA, 14 cases were moderate, and 9 cases were severe. Twenty-seven cases were included in the HC group, with an average age of (32.0±7.7) years. There was no statistically significant difference in the basic information (age, body mass index, testosterone, 25-hydroxyvitamin D, uric acid, and ferritin levels) between the two groups of subjects ( P>0.05). Compared to the HC group, the plasma of the FAGA group showed 26 significantly upregulated differentially expressed proteins ( P<0.05), with AHCY and NECTIN2 exhibiting the most significant differences (all P=0.003). The ROC curve evaluation revealed that the area under the curve for AHCY and NECTIN2 was greater than 0.7, indicating good diagnostic accuracy. The GO analysis revealed that the differentially expressed proteins were primarily enriched in the BAT3 complex (cellular component), ubiquitin-dependent ERAD pathway, natural killer cell activation (biological process), as well as ubiquitin protein ligase binding and ubiquitin-specific protease binding (molecular function). Pearson correlation analysis revealed that AHCY ( r=-0.23, P=0.010) and NECTIN2 ( r=-0.31, P=0.033) were negatively correlated with the severity of hair loss in FAGA patients. The results of hair follicle immunofluorescence analysis showed that the relative fluorescence intensity of AHCY and NECTIN2 in the FAGA group was higher than that in the HC group ( P<0.05). In other words, both AHCY and NECTIN2 were upregulated in the FAGA group. Conclusion:Metabolism-related proteins play an important role in FAGA. AHCY and NECTIN2 may serve as early diagnostic biomarkers for FAGA.
9.A proteomics research on metabolism-related proteins in female androgenetic alopecia
Ji’an WANG ; Jinran LIN ; Haiyang LI ; Kai YANG ; Chunya NI ; Yue ZHANG ; Zheng LI ; Yifei ZHU ; Qingmei LIU ; Wenyu WU
Chinese Journal of Plastic Surgery 2024;40(1):46-55
Objective:To investigate the metabolism-related proteins and their presence in the plasma of female androgenetic alopecia (FAGA) patients.Methods:From March 2021 to March 2023, FAGA patients aged 18-50 (FAGA group) and healthy women (HC group) were recruited from the Dermatology Outpatient Department of Huashan Hospital. 3 ml of peripheral venous blood was collected from each participant and centrifuged to obtain plasma. Olink proteomics analysis was performed on the collected plasma, differentially expressed proteins were screened with R language, the diagnostic accuracy of the differentially expressed proteins was assessed using receiver operating characteristic (ROC) curve. Gene ontology (GO) analysis was performed on differentially expressed proteins. Immunofluorescence analysis on hair follicles in the parietal region of the FAGA group and the occipital region of the HC group was performed to validate the differentially expressed proteins identified. SPSS 25.0 software was used to analyze the data, with normal distribution metric data represented by Mean±SD. Student’s t-test was used to compare the basic information of two groups of subjects and the relative fluorescence intensity of differentially expressed proteins in hair follicles. Pearson correlation analysis was performed on plasma metabolism-related proteins and the basic information of subjects. P<0.05 indicates a statistically significant difference. Results:Sixty-one cases were included in the FAGA group, with an average age of (33.8±7.4) years and an onset age of (29.5±7.8) years. Among them, 38 cases were mild FAGA, 14 cases were moderate, and 9 cases were severe. Twenty-seven cases were included in the HC group, with an average age of (32.0±7.7) years. There was no statistically significant difference in the basic information (age, body mass index, testosterone, 25-hydroxyvitamin D, uric acid, and ferritin levels) between the two groups of subjects ( P>0.05). Compared to the HC group, the plasma of the FAGA group showed 26 significantly upregulated differentially expressed proteins ( P<0.05), with AHCY and NECTIN2 exhibiting the most significant differences (all P=0.003). The ROC curve evaluation revealed that the area under the curve for AHCY and NECTIN2 was greater than 0.7, indicating good diagnostic accuracy. The GO analysis revealed that the differentially expressed proteins were primarily enriched in the BAT3 complex (cellular component), ubiquitin-dependent ERAD pathway, natural killer cell activation (biological process), as well as ubiquitin protein ligase binding and ubiquitin-specific protease binding (molecular function). Pearson correlation analysis revealed that AHCY ( r=-0.23, P=0.010) and NECTIN2 ( r=-0.31, P=0.033) were negatively correlated with the severity of hair loss in FAGA patients. The results of hair follicle immunofluorescence analysis showed that the relative fluorescence intensity of AHCY and NECTIN2 in the FAGA group was higher than that in the HC group ( P<0.05). In other words, both AHCY and NECTIN2 were upregulated in the FAGA group. Conclusion:Metabolism-related proteins play an important role in FAGA. AHCY and NECTIN2 may serve as early diagnostic biomarkers for FAGA.
10.Key Environment Factors and Regionalization of the Ecological Suitability of the Original Species of Chinese Medicine Cremastrae Pseudobulbus/Pleiones Pseudobulbus
Yujie CHI ; Mingyu ZHU ; Yifei LIU ; Di LIU ; Lin SEN ; Zhigang HU ; Jingjing ZHANG
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(5):1254-1260
Objective In order to offer a theoretical foundation for Cremastae Pseudobulbus/Pleiones Pseudobulbus original species scientific introduction and site selection for expansion.Methods We gathered sample distribution information for the original species of Cremastae Pseudobulbus/Pleiones Pseudobulbus nationwide by consulting various databases and conducting field investigations.A total of 257 effective distribution data were gathered.Altitude,temperature,solar radiation,precipitation,and water vapor pressure were among the 68 environment factors that were chosen from 5 categories.The ecological suitability of Cremastae Pseudobulbus/Pleiones Pseudobulbus original species was investigated using Maxent and ArcGIS.Results The investigation revealed that precipitation,solar radiation,and altitude were the core environment factors influencing the ecological suitability of Cremastae Pseudobulbus/Pleiones Pseudobulbus.The most important environment factors varied significantly between diverse original species.The most suitable potential areas for the growth of Cremastra appendicutata,Pleione bulbocodioides,and Pleione yunnanensis were concentrated in Taiwan,South China,and the adjacent areas of Yunnan and Sichuan,respectively.Conclusion Further ecological suitability levels were classified for their potential distribution areas,providing a scientific basis for the rational introduction,cultivation,and artificial stanhbzyydxdardized expansion of the Cremastae Pseudobulbus/Pleiones Pseudobulbus.


Result Analysis
Print
Save
E-mail