1.Intervention mechanism of Yiqi Fumai Formula in mice with experimental heart failure based on "heart-gut axis".
Zi-Xuan ZHANG ; Yu-Zhuo WU ; Ke-Dian CHEN ; Jian-Qin WANG ; Yang SUN ; Yin JIANG ; Yi-Xuan LIN ; He-Rong CUI ; Hong-Cai SHANG
China Journal of Chinese Materia Medica 2025;50(12):3399-3412
This paper aimed to investigate the therapeutic effect and mechanism of action of the Yiqi Fumai Formula(YQFM), a kind of traditional Chinese medicine(TCM), on mice with experimental heart failure based on the "heart-gut axis" theory. Based on the network pharmacology integrated with the group collaboration algorithm, the active ingredients were screened, a "component-target-disease" network was constructed, and the potential pathways regulated by the formula were predicted and analyzed. Next, the model of experimental heart failure was established by intraperitoneal injection of adriamycin at a single high dose(15 mg·kg~(-1)) in BALB/c mice. After intraperitoneal injection of YQFM(lyophilized) at 7.90, 15.80, and 31.55 mg·d~(-1) for 7 d, the protective effects of the formula on cardiac function were evaluated using indicators such as ultrasonic electrocardiography and myocardial injury markers. Combined with inflammatory factors in the cardiac and colorectal tissue, as well as targeted assays, the relevant indicators of potential pathways were verified. Meanwhile, 16S rDNA sequencing was performed on mouse fecal samples using the Illumina platform to detect changes in gut flora and analyze differential metabolic pathways. The results show that the administration of injectable YQFM(lyophilized) for 7 d significantly increased the left ventricular end-systolic internal diameter, fractional shortening, and ejection fraction of cardiac tissue of mice with experimental heart failure(P<0.05). Moreover, markers of myocardial injury were significantly decreased(P<0.05), indicating improved cardiac function, along with significantly suppressed inflammatory responses in cardiac and intestinal tissue(P<0.05). Additionally, the species of causative organisms was decreased, and the homeostasis of gut flora was improved, involving a modulatory effect on PI3K-Akt signaling pathway-related inflammation in cardiac and colorectal tissue. In conclusion, YQFM can affect the "heart-gut axis" immunity through the homeostasis of the gut flora, thereby exerting a therapeutic effect on heart failure. This finding provides a reference for the combination of TCM and western medicine to prevent and treat heart failure based on the "heart-gut axis" theory.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Heart Failure/microbiology*
;
Mice
;
Mice, Inbred BALB C
;
Male
;
Disease Models, Animal
;
Gastrointestinal Microbiome/drug effects*
;
Heart/physiopathology*
;
Humans
;
Signal Transduction/drug effects*
2.Effect and mechanism of Buyang Huanwu Decoction in improving neurological function in ischemic stroke rats based on IRE1α/ASK1/JNK pathway.
Xin-Rong ZHANG ; Tian-Lang WANG ; Jia-Hao ZHANG ; Lu JIN ; Jian-Bo WANG ; Ya-Nan XUE ; Yi QU
China Journal of Chinese Materia Medica 2025;50(14):3857-3867
This study aimed to investigate the effect and mechanism of Buyang Huanwu Decoction in regulating endoplasmic reticulum stress via the inositol-requiring enzyme 1α(IRE1α)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway to improve neurological function in rats with cerebral ischemia/reperfusion injury(CIRI). SPF-grade male sprague-dawley(SD) rats were randomly divided into Sham group, model group, Buyang Huanwu Decoction group, and edaravone group. Except for the Sham group, the other groups were subjected to the modified suture method to establish a middle cerebral artery occlusion/reperfusion(MCAO/R) model. After treatment, neurological function was assessed using the Zea Longa scoring system. Gait analysis was used to detect the motor function. Detection of relative infarct area in brain tissue using 2,3,5-triphenyltetrazolium chloride(TTC) staining. Nissl staining was used to observe the structure of neuronal cells. Western blot and real-time fluorescence quantitative PCR(RT-qPCR) were used to detect IRE1α, ASK1, JNK, B cell lymphoma-2(Bcl-2), Bcl-2 related X protein(Bax), and Caspase-3 in the brain tissue. Immunohistochemistry was used to detect the positive expression of IRE1α, ASK1, and JNK. Immunofluorescence was used to detect the fluorescence expression levels of Bax, Bcl-2, and Caspase-3. The results showed that compared with the Sham group, the model group exhibited increased neurological scores(P<0.01), increased ratio of ground contact area and strength in both forelimbs(P<0.01), enlarged relative infarct area of brain tissue(P<0.05), and a reduced number of Nissl staining-positive cells(P<0.01). The protein and mRNA expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 in brain tissue were significantly elevated, while those of Bcl-2 were decreased(P<0.05). Compared with the model group, both the Buyang Huanwu Decoction group and edaravone group showed reduced neurological scores(P<0.05), decreased ratio of ground contact area and strength in both forelimbs(P<0.05), smaller relative infarct area(P<0.05), alleviated neuronal damage, and increased number of Nissl staining-positive cells(P<0.05). The expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 protein and mRNA in brain tissue were significantly reduced, while those of Bcl-2 were significantly increased(P<0.05). The results indicated that Buyang Huanwu Decoction can effectively improve brain injury in CIRI rats, and its mechanism of action may be related to regulating the endoplasmic reticulum stress IRE1α/ASK1/JNK signaling pathway.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
MAP Kinase Kinase Kinase 5/genetics*
;
Ischemic Stroke/physiopathology*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Apoptosis/drug effects*
;
Endoribonucleases/genetics*
;
JNK Mitogen-Activated Protein Kinases/genetics*
;
Endoplasmic Reticulum Stress/drug effects*
;
Multienzyme Complexes
3.A convenient research strategy for functional verification of epigenetic regulators during spermatogenesis.
Shan LI ; Ying YUAN ; Ke-Yu ZHANG ; Yi-Dan GUO ; Lu-Tong WANG ; Xiao-Yuan ZHANG ; Shu ZHANG ; Qi YAN ; Rong ZHANG ; Jie CHEN ; Feng-Tang YANG ; Jing-Rui LI
Asian Journal of Andrology 2025;27(2):261-267
Spermatogenesis is a fundamental process that requires a tightly controlled epigenetic event in spermatogonial stem cells (SSCs). The mechanisms underlying the transition from SSCs to sperm are largely unknown. Most studies utilize gene knockout mice to explain the mechanisms. However, the production of genetically engineered mice is costly and time-consuming. In this study, we presented a convenient research strategy using an RNA interference (RNAi) and testicular transplantation approach. Histone H3 lysine 9 (H3K9) methylation was dynamically regulated during spermatogenesis. As Jumonji domain-containing protein 1A (JMJD1A) and Jumonji domain-containing protein 2C (JMJD2C) demethylases catalyze histone H3 lysine 9 dimethylation (H3K9me2), we firstly analyzed the expression profile of the two demethylases and then investigated their function. Using the convenient research strategy, we showed that normal spermatogenesis is disrupted due to the downregulated expression of both demethylases. These results suggest that this strategy might be a simple and alternative approach for analyzing spermatogenesis relative to the gene knockout mice strategy.
Spermatogenesis/physiology*
;
Animals
;
Male
;
Mice
;
Epigenesis, Genetic
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Histones/metabolism*
;
RNA Interference
;
Testis/metabolism*
;
Methylation
;
Mice, Knockout
;
Histone Demethylases
4.Body fat distribution and semen quality in 4304 Chinese sperm donors.
Si-Han LIANG ; Qi-Ling WANG ; Dan LI ; Gui-Fang YE ; Ying-Xin LI ; Wei ZHOU ; Rui-Jun XU ; Xin-Yi DENG ; Lu LUO ; Si-Rong WANG ; Xin-Zong ZHANG ; Yue-Wei LIU
Asian Journal of Andrology 2025;27(4):524-530
Extensive studies have identified potential adverse effects on semen quality of obesity, based on body mass index, but the association between body fat distribution, a more relevant indicator for obesity, and semen quality remains less clear. We conducted a longitudinal study of 4304 sperm donors from the Guangdong Provincial Human Sperm Bank (Guangzhou, China) during 2017-2021. A body composition analyzer was used to measure total and local body fat percentage for each participant. Generalized estimating equations were employed to assess the association between body fat percentage and sperm count, motility, and morphology. We estimated that each 10% increase in total body fat percentage (estimated change [95% confidence interval, 95% CI]) was significantly associated with a 0.18 × 10 6 (0.09 × 10 6 -0.27 × 10 6 ) ml and 12.21 × 10 6 (4.52 × 10 6 -19.91 × 10 6 ) reduction in semen volume and total sperm count, respectively. Categorical analyses and exposure-response curves showed that the association of body fat distribution with semen volume and total sperm count was stronger at higher body fat percentages. In addition, the association still held among normal weight and overweight participants. We observed similar associations for upper limb, trunk, and lower limb body fact distributions. In conclusion, we found that a higher body fat distribution was significantly associated with lower semen quality (especially semen volume) even in men with a normal weight. These findings provide useful clues in exploring body fat as a risk factor for semen quality decline and add to evidence for improving semen quality for those who are expected to conceive.
Humans
;
Male
;
Adult
;
Semen Analysis
;
China
;
Body Fat Distribution
;
Longitudinal Studies
;
Sperm Count
;
Sperm Motility
;
Body Mass Index
;
Tissue Donors
;
Obesity/complications*
;
Spermatozoa
;
Young Adult
;
Middle Aged
;
East Asian People
5.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
6.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
7.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
8.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
9.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
10.Effect of Juglone on Proliferation Inhibition and RIPK1/RIPK3/MLKL Expression in Acute Myeloid Leukemia Cells.
Chun-Yi LYU ; Xue-Wei YIN ; Zong-Hong LI ; Chen HAN ; Yan WANG ; Zhen-Zhen WANG ; Lyu-Ye LIU ; Rui-Rong XU
Journal of Experimental Hematology 2025;33(4):980-985
OBJECTIVE:
To study the effects and mechanisms of juglone on the proliferation and apoptosis of acute myeloid leukemia (AML) cells.
METHODS:
Juglone and AML targets were collected from public databases, and the intersecting target clusters were taken for functional enrichment analysis to explore the potential mechanism of juglone in the treatment of AML. Then wet experiments were performed to verify. AML cell lines including KG-1a, MV-411, THP-1 and MOLM-13 were treated with different concentrations of juglone for 24 h. MTT assay was used to detect cell viability and determine the IC50, and the most sensitive cell line was screened for subsequent experiments. Flow cytometry was used to detect the apoptosis of cells treated with different concentrations of juglone. Western blot was performed to check the expression of relevant proteins.
RESULTS:
Eleven targets were obtained as potential targets for juglone in the treatment of AML, and the top ten significantly enriched pathways were intrinsic pathway of apoptosis, programmed cell death, cytochrome c-mediated apoptotic response, apoptosis, apoptotic factor-mediated response, regulated necrosis, cytokine signaling in immune system, signaling by interleukins, oncogene induced senescence, and signal transduction. The cell viability of KG-1a, MV-411, THP-1 and MOLM-13 was decreased with increasing juglone concentration after 24 h of juglone treatment (r =-0.992, -0.886, -0.956, -0.910). Among them, MOLM-13 was the most sensitive to juglone. The results of flow cytometry showed that the apoptosis rate of MOLM-13 tended to significantly increase with the increasing concentration of juglone (r =0.99). At the same time point, p-RIPK1/RIPK1, p-RIPK3/RIPK3, and p-MLKL/MLK were decreased in each juglone concentration group compared with control group.
CONCLUSION
Juglone inhibits the viability of KG-1a, MV-411, THP-1 and MOLM-13 cells, and induces apoptosis of MOLM-13 cells, the mechanism of which may be related to the inhibition of RIPK1/RIPK3/MLKL signaling pathway.
Humans
;
Naphthoquinones/pharmacology*
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Leukemia, Myeloid, Acute/pathology*
;
Cell Line, Tumor
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
;
Protein Kinases/metabolism*
;
Signal Transduction
;
Cell Survival/drug effects*

Result Analysis
Print
Save
E-mail