1.Unveiling the molecular and cellular links between obstructive sleep apnea-hypopnea syndrome and vascular aging.
Wei LIU ; Le ZHANG ; Wenhui LIAO ; Huiguo LIU ; Wukaiyang LIANG ; Jinhua YAN ; Yi HUANG ; Tao JIANG ; Qian WANG ; Cuntai ZHANG
Chinese Medical Journal 2025;138(2):155-171
Vascular aging (VA) is a common etiology of various chronic diseases and represents a major public health concern. Intermittent hypoxia (IH) associated with obstructive sleep apnea-hypopnea syndrome (OSAHS) is a primary pathological and physiological driver of OSAHS-induced systemic complications. A substantial proportion of OSAHS patients, estimated to be between 40% and 80%, have comorbidities such as hypertension, heart failure, coronary artery disease, pulmonary hypertension, atrial fibrillation, aneurysm, and stroke, all of which are closely associated with VA. This review examines the molecular and cellular features common to both OSAHS and VA, highlighting decreased melatonin secretion, impaired autophagy, increased apoptosis, increased inflammation and pyroptosis, increased oxidative stress, accelerated telomere shortening, accelerated stem cell depletion, metabolic disorders, imbalanced protein homeostasis, epigenetic alterations, and dysregulated neurohormonal signaling. The accumulation and combination of these features may underlie the pathophysiological link between OSAHS and VA, but the exact mechanisms by which OSAHS affects VA may require further investigation. Taken together, these findings suggest that OSAHS may serve as a novel risk factor for VA and related vascular disorders, and that targeting these features may offer therapeutic potential to mitigate the vascular risks associated with OSAHS.
Humans
;
Sleep Apnea, Obstructive/pathology*
;
Aging/physiology*
;
Oxidative Stress/physiology*
;
Animals
2.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
3.A study on the predictive model of porous hyperelastic properties of human alveolar bone based on computed tomography imaging.
Bin WU ; Mingna LI ; Fan YANG ; Le YUAN ; Yi LU ; Di JIANG ; Yang YI ; Bin YAN
Journal of Biomedical Engineering 2025;42(2):359-365
Alveolar bone reconstruction simulation is an effective means for quantifying orthodontics, but currently, it is not possible to directly obtain human alveolar bone material models for simulation. This study introduces a prediction method for the equivalent shear modulus of three-dimensional random porous materials, integrating the first-order Ogden hyperelastic model to construct a computed tomography (CT) based porous hyperelastic Ogden model (CT-PHO) for human alveolar bone. Model parameters are derived by combining results from micro-CT, nanoindentation experiments, and uniaxial compression tests. Compared to previous predictive models, the CT-PHO model shows a lower root mean square error (RMSE) under all bone density conditions. Simulation results using the CT-PHO model parameters in uniaxial compression experiments demonstrate more accurate prediction of the mechanical behavior of alveolar bone under compression. Further prediction and validation with different individual human alveolar bone samples yield accurate results, confirming the generality of the CT-PHO model. The study suggests that the CT-PHO model proposed in this paper can estimate the material properties of human alveolar bone and may eventually be used for bone reconstruction simulations to guide clinical treatment.
Humans
;
Tomography, X-Ray Computed/methods*
;
Porosity
;
Alveolar Process/physiology*
;
Bone Density
;
Computer Simulation
;
Elasticity
;
X-Ray Microtomography
;
Stress, Mechanical
;
Finite Element Analysis
;
Models, Biological
4.Efficacy and Safety of Decitabine-Based Myeloablative Preconditioning Regimen for allogeneic Hematopoietic Stem Cell Transplantation in Patients with Acute Myeloid Leukemia.
Xia-Wei ZHANG ; Jing-Jing YANG ; Ning LE ; Yu-Jun WEI ; Ya-Nan WEN ; Nan WANG ; Yi-Fan JIAO ; Song-Hua LUAN ; Li-Ping DOU ; Chun-Ji GAO
Journal of Experimental Hematology 2025;33(2):557-564
OBJECTIVE:
To analyze the efficacy and safety of decitabine-based myeloablative preconditioning regimen for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML).
METHODS:
The clinical characteristics and efficacy of 115 AML patients who underwent allo-HSCT at the First Medical Center of Chinese PLA General Hospital from August 2018 to August 2022 were retrospectively analyzed, including 37 patients treated with decitabine conditioning regimen (decitabine group) and 78 patients without decitabine conditioning regimen (non-decitabine group). The cumulative incidence of relapse (CIR), overall survival (OS), leukemia-free survival (LFS), non-relapse mortality (NRM) and graft versus host disease (GVHD) were analyzed.
RESULTS:
For the patients in first complete remission (CR1) state before allo-HSCT, the 1-year relapse rates of decitabine group(22 cases) and non-decitabine group(69 cases) were 9.1% and 29.6%, respectively, the difference was statistically significant(P =0.042). The 1-year cumulative incidence of acute graft-versus-host disease (aGVHD) in decitabine group and non-decitabine group was 62.2% and 70.5%, respectively, and the 1-year cumulative incidence of chronic inhibitor-versus-host disease (cGVHD) was 18.9% and 14.1%, respectively, there were no significant differences in the incidence of aGVHD and cGVHD between the two groups (P >0.05). Of the 115 patients, there were no significantly differences in the 1-year CIR(21.7% vs 28.8%, P =0.866), NRM(10.9% vs 3.9%, P =0.203), OS(75.2% vs 83.8%, P =0.131) and LFS(74.6% vs 69.1%, P =0.912) between the decitabine group(37 cases) and the non-decitabine group(78 cases).
CONCLUSION
Decitabine-based conditioning regimen could reduce the relapse rate of AML CR1 patients with good safety.
Humans
;
Leukemia, Myeloid, Acute/therapy*
;
Hematopoietic Stem Cell Transplantation/methods*
;
Decitabine/therapeutic use*
;
Transplantation Conditioning/methods*
;
Retrospective Studies
;
Graft vs Host Disease
;
Transplantation, Homologous
;
Male
;
Female
;
Adult
;
Middle Aged
;
Adolescent
;
Young Adult
5.Clinical Efficacy of CAG Regimen Combined with Venetoclax, Chidamide, and Azacitidine in the Treatment of Elderly Patients with Acute Myeloid Leukemia.
Qing-Yang LIU ; Yu JING ; Meng LI ; Sai HUANG ; Yu-Chen LIU ; Ya-Nan WEN ; Jing-Jing YANG ; Wen-Jing GAO ; Ning LE ; Yi-Fan JIAO ; Xia-Wei ZHANG ; Li-Ping DOU
Journal of Experimental Hematology 2025;33(4):945-950
OBJECTIVE:
To explore the efficacy and adverse reactions of CAG regimen combined with venetoclax, chidamide, and azacitidine in the treatment of elderly patients with acute myeloid leukemia (AML).
METHODS:
15 elderly AML patients aged≥60 years old who were admitted to the Hematology Department of our hospital from May 2022 to October 2023 were treated with the CAG regimen combined with venetoclax, chidamide and azacitidine, and the efficacy, treatment-related adverse events, overall survival (OS) and event-free survival (EFS) were analyzed.
RESULTS:
After one course of treatment, 11 out of 15 patients achieved complete response (CR), 3 patients achieved CR with incomplete hematologic recovery (CRi), and 1 patient died due to prior infection before efficacy evaluation, and the overall response rate (ORR) was 93.3% (14/15). The median follow-up time was 131 (19-275) days, with median OS and EFS both remaining unreached. Next-generation sequencing (NGS) analysis showed that among the 15 patients, 13 were detected with gene mutations, and there were 7 genes with mutation frequencies of more than 10%, including ASXL1 (4 cases), RUNX1 (4 cases), BCOR (3 cases), DNMT3A (3 cases), STAG2 (2 cases), IDH1/2 (2 cases), and TET (2 cases). Among the 13 patients with detectable mutations, 12 patients achieved composite response (CR+CRi). The average recovery time of white blood cell count was 14.6 days after chemotherapy, and the average recovery time of platelets was 7.7 days after chemotherapy. The main adverse event was myelosuppression, with 10 patients accompanied by infection. Except for 1 patient who died due to septic shock during chemotherapy, no patients experienced serious complications such as heart, liver, or kidney damage during the treatment process.
CONCLUSION
The CACAG+V regimen, which combines the CAG regimen with venetoclax, chidamide, and azacitidine, can be applied in the treatment of elderly AML patients, demonstrating good safety and induction remission rate.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use*
;
Sulfonamides/therapeutic use*
;
Aminopyridines/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Azacitidine/therapeutic use*
;
Aged
;
Benzamides/therapeutic use*
;
Male
;
Female
;
Treatment Outcome
;
Middle Aged
;
Cytarabine
;
Aclarubicin
;
Granulocyte Colony-Stimulating Factor
6.Berg Balance Scale score is a valuable predictor of all-cause mortality among acute decompensated heart failure patients.
Yu-Xuan FAN ; Jing-Jing CHENG ; Zhi-Qing FAN ; Jing-Jin LIU ; Wen-Juan XIU ; Meng-Yi ZHAN ; Lin LUO ; Guang-He LI ; Le-Min WANG ; Yu-Qin SHEN
Journal of Geriatric Cardiology 2025;22(6):555-562
OBJECTIVE:
To investigate possible associations between physical function assessment scales, such as Short Physical Performance Battery (SPPB) and Berg Balance Scale (BBS), with all-cause mortality in acute decompensated heart failure (ADHF) patients.
METHODS:
A total of 108 ADHF patients were analyzed from October 2020 to October 2022, and followed up to May 2023. The association between baseline clinical characteristics and all-cause mortality was analyzed by univariate Cox regression analysis, while for SPPB and BBS, univariate Cox regression analysis was followed by receiver operating characteristic curves, in which the area under the curve represented their predictive accuracy for all-cause mortality. Incremental predictive values for both physical function assessments were measured by calculating net reclassification index and integrated discrimination improvement scores. Optimal cut-off value for BBS was then identified using restricted cubic spline plots, and survival differences below and above that cut-off were compared using Kaplan-Meier survival curves and the log-rank test. The clinical utility of BBS was measured using decision curve analysis.
RESULTS:
For baseline characteristics, age, female, blood urea nitrogen, as well as statins, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, or angiotensin receptor-neprilysin inhibitors, were predictive for all-cause mortality for ADHF patients. With respect to SPPB and BBS, higher scores were associated with lower all-cause mortality rates for both assessments; similar area under the curves were measured for both (0.774 for SPPB and 0.776 for BBS). Furthermore, BBS ≤ 36.5 was associated with significantly higher mortality, which was still applicable even adjusting for confounding factors; BBS was also found to have great clinical utility under decision curve analysis.
CONCLUSIONS
BBS or SPPB could be used as tools to assess physical function in ageing ADHF patients, as well as prognosticate on all-cause mortality. Moreover, prioritizing the improvement of balance capabilities of ADHF patients in cardiac rehabilitation regimens could aid in lowering mortality risk.
7.Integrated-omics analysis defines subtypes of hepatocellular carcinoma based on circadian rhythm.
Xiao-Jie LI ; Le CHANG ; Yang MI ; Ge ZHANG ; Shan-Shan ZHU ; Yue-Xiao ZHANG ; Hao-Yu WANG ; Yi-Shuang LU ; Ye-Xuan PING ; Peng-Yuan ZHENG ; Xia XUE
Journal of Integrative Medicine 2025;23(4):445-456
OBJECTIVE:
Circadian rhythm disruption (CRD) is a risk factor that correlates with poor prognosis across multiple tumor types, including hepatocellular carcinoma (HCC). However, its mechanism remains unclear. This study aimed to define HCC subtypes based on CRD and explore their individual heterogeneity.
METHODS:
To quantify CRD, the HCC CRD score (HCCcrds) was developed. Using machine learning algorithms, we identified CRD module genes and defined CRD-related HCC subtypes in The Cancer Genome Atlas liver HCC cohort (n = 369), and the robustness of this method was validated. Furthermore, we used bioinformatics tools to investigate the cellular heterogeneity across these CRD subtypes.
RESULTS:
We defined three distinct HCC subtypes that exhibit significant heterogeneity in prognosis. The CRD-related subtype with high HCCcrds was significantly correlated with worse prognosis, higher pathological grade, and advanced clinical stages, while the CRD-related subtype with low HCCcrds had better clinical outcomes. We also identified novel biomarkers for each subtype, such as nicotinamide n-methyltransferase and myristoylated alanine-rich protein kinase C substrate-like 1.
CONCLUSION
We classify the HCC patients into three distinct groups based on circadian rhythm and identify their specific biomarkers. Within these groups greater HCCcrds was associated with worse prognosis. This approach has the potential to improve prediction of an individual's prognosis, guide precision treatments, and assist clinical decision making for HCC patients. Please cite this article as: Li XJ, Chang L, Mi Y, Zhang G, Zhu SS, Zhang YX, et al. Integrated-omics analysis defines subtypes of hepatocellular carcinoma based on circadian rhythm. J Integr Med. 2025; 23(4): 445-456.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Circadian Rhythm/genetics*
;
Prognosis
;
Male
;
Female
;
Biomarkers, Tumor/genetics*
;
Middle Aged
;
Machine Learning
;
Computational Biology
8. Research progress of Parkin protein regulating mitochondrial homeostasis through ubiquitination in cardiovascular diseases
Ke-Juan LI ; Jian-Shu CHEN ; Yi-Xin XIE ; Jia-Le BU ; Xiao-Wei ZHANG ; Yong-Nan LI
Chinese Pharmacological Bulletin 2024;40(2):224-228
In addition to providing energy for cells, mitochondria also participate in calcium homeostasis, cell information transfer, cell apoptosis, cell growth and differentiation. Therefore, maintaining mitochondrial homeostasis is very crucial for the body to carry out normal life activities. Ubiquitination, a post-translational modification of proteins, is involved in various physiological and pathological processes of cells by regulating mitochondrial homeostasis. However, the mechanism by which ubiquitination regulates mitochondrial homeostasis has not been summarized, especially the effect of Parkin protein on cardiovascular diseases. In this paper, the specific mechanism of mitochondrial homeostasis regulated by ubiquitination of Parkin protein is discussed, and the influence of mitochondrial homeostasis imbalance on cardiovascular diseases is reviewed, with a view to providing potential therapeutic strategies for the clinical treatment of cardiovascular diseases.
9.A nomogram model for predicting malnutrition after a tracheotomy
Ang CAI ; Junfeng YANG ; Ruyao LIU ; Le WANG ; Yi LI ; Liugen WANG ; Heping LI ; Xi ZENG
Chinese Journal of Physical Medicine and Rehabilitation 2024;46(3):199-204
Objective:To explore the risk factors for malnutrition after a tracheotomy and to construct a predictive model useful for its prevention through early intervention.Methods:Clinical data describing 440 tracheotomy patients were subjected to a retrospective analysis. The variables examined were age, sex, etiology, Glasgow Coma Score (GCS), activities of daily living (ADL) score, age-corrected Charlson comorbidity index (aCCI), food intake, swallowing function, incidence of infections, as well as any history of diabetes mellitus, hypertension, smoking or alcohol consumption. Patients identified as being at risk of malnutrition (NRS-2002≥3) were screened using the Nutritional Risk Screening tool (NRS-2002) and the European Society of Clinical Nutrition and Metabolism′s ESPEN2015 criteria. The subjects were thus categorized into a malnutrition group of 343 and a control group of 97. Unifactorial and multifactorial logistic regression analyses were performed, and stepwise regression was applied to include the factors found significant in the unifactorial analysis into the multifactorial logistic regression analysis, and to construct a column-line graph prediction model. The clinical utility of the model was assessed by applying the receiver operator characteristics (ROC) curves, calibration plots and decision curve analysis (DCA).Results:Of the 440 persons studied, 343 (78%) were malnourished. The multivariate logistic regression analysis showed that pulmonary infection, dysphagia, low GCS score and high aCCI score were significant risk factors for malnutrition after a tracheotomy. A prediction nomograph was constructed. After fitting and correcting, the area under the curve (AUC) of the prediction model′s ROC curve was 0.911, the specificity was 80.4%, and the sensitivity was 91.3%. That was significantly higher than the AUCs for pulmonary infection (0.809), dysphagia (0.697), aCCI (0.721) and GCS (0.802). Bootstrap self-sampling was used to verify the model internally. After 1000 samples the average absolute error between the predicted risk and the actual risk was 0.013, indicating good prediction ability. The DCA results demonstrated that the model has substantial clinical applicability across a range of nutritional interventions, particularly for threshold probability values ranging from 0 to 0.96.Conclusion:Pulmonary infection, dysphagia, low GCS score, and high aCCI score are risk factors for malnutrition among tracheotomy patients. The nomogram model constructed in this study has good predictive value for the occurrence of malnutrition among such patients.
10.Integrated Detection Techniques for Forensic DNA and DNA Methylation Markers
Na YI ; Guang-Bin ZHAO ; Ke-Lai KANG ; Yi-Ren YAO ; Ke-Li GUO ; Jie ZHAO ; Chi ZHANG ; Lei MIAO ; Le WANG ; An-Quan JI
Progress in Biochemistry and Biophysics 2024;51(9):2156-2167
DNA genetic markers have always played important roles in individual identification, kinship analysis, ancestry inference and phenotype characterization in the field of forensic medicine. DNA methylation has unique advantages in biological age inference, body fluid identification and prediction of phenotypes. The majority of current studies independently examine DNA and DNA methylation markers using various workflows, and they use various analytical procedures to interpret the biological information these two markers present. Integrated methods detect DNA and DNA methylation markers simultaneously through a single experimental workflow using the same preparation of sample. Therefore, they can effectively reduce consumption of time and cost, streamline experimental procedures, and preserve valuable DNA samples taken from crime scenes. In this paper, the integrated detection approaches of DNA and DNA methylation markers on different detection platforms were reviewed. In order to convert methylation modifications to detectable forms, several options were available for pretreatment of genomic DNA, including digestion with methylation-sensitive restriction enzyme, affinity enrichment of methylated fragments, conversion of methylated or unmethylated cytosine. Multiplexed primers can be designed for DNA markers and converted DNA methylation markers for co-amplification. The schemes of using capillary electrophoresis platform for integrated detection add the pretreatment of genomic DNA on the basis of detecting DNA genetic markers. DNA and DNA methylation markers are then integrated by co-amplification. But the limited number of fluorescent options available and the length of amplicons restrict the type and quantity of markers that can be integrated into a panel. Pyrophosphate sequencing also supports integrated detection of DNA and DNA methylation markers. On this platform, due to the conversion of unmethylated cytosine to thymine after treatment with bisulfite, the methylation level of CpG site can be directly calculated using the peak height ratio of cytosine bases and thymine bases. Therefore, the methylation levels and SNP typing can be simultaneously obtained. However, due to the limited read length of sequencing, the detection of markers with longer amplicons is restricted. It is not conducive to fully interpret the complete information of the target sequence. Next-generation sequencing also supports integrated detection of DNA and DNA methylation markers. A preliminary experimental process including DNA extraction, pretreatment of genomic DNA, co-preparation of DNA and DNA methylation library and co-sequencing, has been formed based on the next-generation sequencing platform. It confirmed the feasibility of next-generation sequencing technology for integrated detection of DNA and DNA methylation markers. In field of biomedicine, various integrated detection schemes and corresponding data analysis approaches of DNA and DNA genetic markers developed based on the above detection process.Co-analysis can simultaneously obtain the genomic genetic and epigenetic information through a single analytic process. These schemes suggest that next-generation sequencing may be an effective method for achieving more accurate and highly integrated detection, helping to explore the potential for application in forensic biological samples. We finally explore the impact of interactions between sites and different pretreatment methods on the integrated detection of DNA and DNA methylation markers, and also propose the challenge of applying third-generation sequencing for integrated detection in forensic samples.

Result Analysis
Print
Save
E-mail