1.Celastrol directly targets LRP1 to inhibit fibroblast-macrophage crosstalk and ameliorates psoriasis progression.
Yuyu ZHU ; Lixin ZHAO ; Wei YAN ; Hongyue MA ; Wanjun ZHAO ; Jiao QU ; Wei ZHENG ; Chenyang ZHANG ; Haojie DU ; Meng YU ; Ning WAN ; Hui YE ; Yicheng XIE ; Bowen KE ; Qiang XU ; Haiyan SUN ; Yang SUN ; Zijun OUYANG
Acta Pharmaceutica Sinica B 2025;15(2):876-891
Psoriasis is an incurable chronic inflammatory disease that requires new interventions. Here, we found that fibroblasts exacerbate psoriasis progression by promoting macrophage recruitment via CCL2 secretion by single-cell multi-omics analysis. The natural small molecule celastrol was screened to interfere with the secretion of CCL2 by fibroblasts and improve the psoriasis-like symptoms in both murine and cynomolgus monkey models. Mechanistically, celastrol directly bound to the low-density lipoprotein receptor-related protein 1 (LRP1) β-chain and abolished its binding to the transcription factor c-Jun in the nucleus, which in turn inhibited CCL2 production by skin fibroblasts, blocked fibroblast-macrophage crosstalk, and ameliorated psoriasis progression. Notably, fibroblast-specific LRP1 knockout mice exhibited a significant reduction in psoriasis like inflammation. Taken together, from clinical samples and combined with various mouse models, we revealed the pathogenesis of psoriasis from the perspective of fibroblast-macrophage crosstalk, and provided a foundation for LRP1 as a novel potential target for psoriasis treatment.
2.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
3. Effect of safflower yellow on learning and memory ability of APP/PS1 at different months based on TLR4/NF-KB signaling pathway
Meng-Yu ZHANG ; Yan-Jie ZHENG ; Hong-Xia YE ; Chun-Hui WANG ; Yan-Li HU
Chinese Pharmacological Bulletin 2024;40(1):76-82
Aim To investigate the effect of safflower yellow (SY) on learning and memory ability of APP/ PS1 mice at different disease stages, and to explore the mechanism of SY anti- Alzheimer's disease by using 3-,6- and 9-month-old APP/PS 1 transgenic mice as experimental animal models. Methods Behavioral experiments were conducted to observe the effects of SY on learning and memory of APP/PS1 mice of different months. ELISA was used to detect the effect of SY on the expression of inflammatory factors in cortex of mice of different months. Western blot was used to detect the microglia activation marker protein, and its mechanism of action was further analyzed. Results SY could enhance the learning and memory ability of mice aged 3, 6 and 9 months, reduce the content of IL-6 and increase the content of TGF-β1 in brain tissue, up-regulate the expression levels of arginase-1 (arg-1) and triggering receptor expressed on myeloid cells 2 (tREM2) in brain tissue of mice of different months, and down-regulate the expression levels of inducible nitric oxide synthase (iNOS), Toll-like receptors 4 (tlr4) and nuclear factor-kappa B (nf-KB). Conclusions Compared with 3- and 9-month-old mice, SY is the most effective in improving learning memory in 6-month-old APP/PS1 mice. SY inhibits TLR4/NF-KB pathway activation by inducing TREM2 expression in brain tissue of APP/PS 1 transgenic mice, promotes microglia phenotype shift to anti-inflammatory phenotype, reduces chronic neuroinflammatory response, and improves learning memory in APP/PS1 mice at all months of age.
4.Risk factors and survival of EBV-infected aplastic anemia patients after haploid allogeneic hematopoietic stem cell transplantation
Xin-He ZHANG ; Jia FENG ; Zheng-Wei TAN ; Yue-Chao ZHAO ; Hui-Jin HU ; Jun-Fa CHEN ; Li-Qiang WU ; Qing-Hong YU ; Di-Jiong WU ; Bao-Dong YE ; Wen-Bin LIU
Chinese Journal of Infection Control 2024;23(10):1228-1235
Objective To analyze the risk factors and survival status of Epstein-Barr virus(EBV)infection in pa-tients with aplastic anemia(AA)after haploid allogeneic hematopoietic stem cell transplantation(Haplo-HSCT).Methods Clinical data of 78 AA patients who underwent Haplo-HSCT in the hematology department of a hospital from January 1,2019 to October 31,2022 were analyzed retrospectively.The occurrence and onset time of EBV viremia,EBV-related diseases(EBV diseases),and post-transplant lymphoproliferative disorders(PTLD)were ob-served,risk factors and survival status were analyzed.Results Among the 78 patients,38 were males and 40 were females,with a median age of 33(9-56)years old;53 patients experienced EBV reactivation,with a total inci-dence of 67.9%,and the median time for EBV reactivation was 33(13,416)days after transplantation.Among pa-tients with EBV reactivation,49 cases(62.8%)were simple EBV viremia,2 cases(2.6%)were possible EBV di-seases,and 2 cases(2.6%)were already confirmed EBV diseases(PTLD).Univariate analysis showed that age 1<40 years old at the time of transplantation,umbilical cord blood infusion,occurrence of acute graft-versus-host disease(aGVHD)after transplantation,and concurrent cytomegalovirus(CMV)infection were independent risk fac-tors for EBV reactivation in AA patients after Haplo-HSCT.Multivariate analysis showed that concurrent CMV in-fection was an independent risk factor for EBV reactivation in A A patients after Haplo-HSCT(P=0.048).Ritu-ximab intervention before stem cell reinfusion was a factor affecting the duration of EBV reactivation(P<0.05).The mortality of EBV viremia,EBV diseases,and PTLD alone were 8.2%,50.0%,and 100%,respectively.The 2-year overall survival rate of patients with and without EBV reactivation were 85.3%,and 90.7%,respectively,difference was not statistically significant(P=0.897).However,patients treated with rituximab had 2-year lower survival rate than those who did not use it,with a statistically significant difference(P=0.046).Conclusion EBV reactivation is one of the serious complications in AA patients after Haplo-HSCT,which affects the prognosis and survival of patients.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Effects of astragaloside IV on acute myocardial injury in rats with high-level spinal cord injury
Qinfeng HUANG ; Ying ZHENG ; Liqin WEI ; Ye LIAO ; Jiaqi LI ; Lijun LIN ; Jiaxin CHEN ; Rujie ZHENG ; Wenna LIN ; Hui CHEN
Chinese Journal of Trauma 2024;40(11):1028-1039
Objective:To investigate the effects of astragaloside IV (AS-IV) on acute myocardial injury in rats with high-level spinal cord injury (SCI).Methods:Twenty-four healthy male SD rats, aged 8-10 weeks with a body weight of 250-300 g, were randomly divided into 4 groups using a random number table method: sham operation group, high-level SCI group (SCI group), high-level SCI+AS-IV group (SCI+AS-IV group) and high-level SCI+AS-IV+silent information regulator 1 (SIRT1) inhibitor EX527 group (SCI+AS-IV+EX527 group), with 6 rats in each group. The SCI model was established using the modified Allen method and the sham operation group underwent the spinal cord exposure only. In the SCI+AS-IV group, 40 mg/kg of AS-IV was injected intraperitoneally immediately after injury. SCI+AS-IV+EX527 group received an intraperitoneal injection of 5 mg/kg EX527 at one hour before injury and another injection of 40 mg/kg AS-IV in the same way immediately after injury. The sham operation group and the SCI group received an equal volume of saline via intraperitoneal injection. Immediately after awakening from injury, the hind limb motor function of the rats in each group was observed, recorded and then evaluated using the BBB method. At 24 hours after injury, the ultrastructure of the cardiomyocytes was examined under a transmission electron microscope; the levels of serum cardiac troponin I (cTnI), myocardial tissue inflammatory factors interleukin (IL)-18 and IL-1β were quantified by the ELISA method; the level of reactive oxygen species (ROS) of the myocardial tissue was assessed utilizing the dihydroethidium (DHE) assay; biochemical analyses were employed to determine the superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations; mRNA and protein expression levels of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), cysteinyl aspartate specific proteinase-1 (caspase-1), gasdermin D (GSDMD), SIRT1 and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) were examined using RT-PCR and Western blot; cardiomyocyte pyroptosis rate was evaluated by caspase-1 and TUNEL double-labeled fluorescence staining.Results:Immediately after awakening from injury, the sham operation group exhibited normal hind limb activity, with BBB scores of 21(21, 21)points, while the remaining groups displayed flaccid paralysis in both hind limbs, accompanied by the cessation of spontaneous excretion, with BBB scores of 0(0, 0)points. At 24 hours after injury, transmission electron microscopy did not reveal any significant abnormalities in the ultrastructure of the myocardiomyocytes in the sham operation group, while changes of varying degrees were observed in the SCI group. The ELISA results indicated that at 24 hours after injury, the serum cTnI level in the SCI group was (1 435.3±148.1)pg/ml, higher than (619.6±95.4)pg/ml in the sham operation group ( P<0.01); the cTnI level was (1 154.0±80.0)pg/ml in the SCI+AS-IV group, lower than that in the SCI group ( P<0.01); the cTnI level was (1 321.8±50.2)pg/ml in the SCI+AS-IV+EX527 group, higher than that in the SCI+AS-IV group ( P<0.05). The levels of IL-18 and IL-1β in the myocardial tissue in the SCI group were (493.0±145.0)pg/ml and (936.7±93.2)pg/ml, higher than (131.1±62.5)pg/ml and (281.7±83.6)pg/ml in the sham operation group ( P<0.01); the levels of IL-18 and IL-1β in the SCI+AS-IV group were (182.4±45.6)pg/ml and (573.4±99.5)pg/ml, lower than those in the SCI group ( P<0.01); the levels of IL-18 and IL-1β in the SCI+AS-IV+EX527 group were (337.4±72.0)pg/ml and (742.6±82.7)pg/ml, higher than those in the SCI+AS-IV group ( P<0.05), yet lower than those in the SCI group ( P<0.01). At 24 hours after injury, DHE and biochemical assays showed that the levels of ROS and MDA in the myocardial tissue in the SCI group were (65±6)% and (1.97±0.27)nmol/mg, higher than (19±10)% and (1.03±0.16)nmol/mg in the sham operation group ( P<0.01); the ROS and MDA levels in the SCI+AS-IV group were (37±10)% and (1.39±0.11)nmol/mg, lower than those in the SCI group ( P<0.01); the ROS and MDA levels in the SCI+AS-IV+EX527 group were (52±7)% and (1.70±0.14)nmol/mg, higher than those in the SCI+AS-IV group ( P<0.05). The SOD level in the myocardial tissue of the SCI group was (658.48±77.56)U/mg, lower than (1 059.55±71.91)U/mg in the sham operation group ( P<0.01); the SOD level in the SCI+AS-IV group was (901.74±32.30)U/mg, higher than that in the SCI group ( P<0.01); the SOD level in the myocardial tissue in the SCI+AS-IV+EX527 group was (799.86±26.70)U/mg, lower than that in the SCI+AS-IV group ( P<0.05). At 24 hours after injury, RT-PCR showed that the mRNA expression levels of NLRP3, caspase-1 and GSDMD in the myocardial tissue of the SCI group were 2.07±0.25, 2.46±0.28 and 1.82±0.12 respectively, which were higher than 1.10±0.13, 0.95±0.17 and 1.03±0.08 in the sham operation group ( P<0.01); the mRNA expression levels of NLRP3, caspase-1 and GSDMD in the SCI+AS-IV group were 1.47±0.24, 1.51±0.16 and 1.42±0.13 respectively, which were lower than those in the SCI group ( P<0.01); the mRNA expression levels of NLRP3, caspase-1 and GSDMD in the SCI+AS-IV+EX527 group were 1.93±0.28, 1.97±0.31 and 1.65±0.16 respectively, which were higher than those in the SCI+AS-IV group, yet lower than those in the SCI group ( P<0.05). The mRNA expression levels of SIRT1 and PGC-1α in the myocardial tissue in the SCI group were 0.41±0.09 and 0.56±0.07, lower than 1.20±0.14 and 1.29±0.20 in the sham operation group ( P<0.01); the mRNA expression levels of SIRT1 and PGC-1α in the myocardial tissue in the SCI+AS-IV group were 0.78±0.08 and 1.01±0.19, higher than those of the SCI group ( P<0.01); the mRNA expression levels of SIRT1 and PGC-1α in the myocardial tissue of the SCI+AS-IV+EX527 group were 0.53±0.12 and 0.72±0.22, lower than those of the SCI+AS-IV group ( P<0.05). At 24 hours after injury, the western blot analysis showed that the protein expression levels of NLRP3, caspase-1 and GSDMD in the myocardial tissue in the SCI group were 1.00±0.20, 0.60±0.19 and 0.77±0.15 respectively, which were higher than 0.27±0.09, 0.18±0.10 and 0.28±0.08 in the sham operation group ( P<0.01); the protein expression levels of NLRP3, caspase-1 and GSDMD in the SCI+AS-IV group were 0.59±0.10, 0.25±0.11 and 0.33±0.11 respectively, lower than those in the SCI group ( P<0.01); the protein expression levels of NLRP3, caspase-1 and GSDMD in the myocardial tissue in the SCI+AS-IV+EX527 group were 0.85±0.15, 0.54±0.12 and 0.55±0.13 respectively, higher than those in the SCI+AS-IV group ( P<0.05). The protein expression levels of SIRT1 and PGC-1α in the myocardial tissue in the SCI group were 0.44±0.16 and 0.28±0.10, lower than 0.93±0.22 and 0.75±0.16 in the sham operation group ( P<0.01); the protein expression levels of SIRT1 and PGC-1α in the myocardial tissue in the SCI+AS-IV group were 0.78±0.19 and 0.55±0.12, higher than those in the SCI group ( P<0.01); the protein expression levels of SIRT1 and PGC-1α in the myocardial tissue in the SCI+AS-IV+EX527 group were 0.46±0.16 and 0.35±0.07, lower than those in the SCI+AS-IV group ( P<0.05). At 24 hours after injury, caspase-1 and TUNEL double-labeled fluorescence staining showed that the cardiomyocyte pyroptosis rate in the SCI group was (34.5±6.7)%, higher than (5.3±2.9)% in the sham operation group ( P<0.01); the cardiomyocyte pyroptosis rate in the SCI+AS-IV group was (13.4±3.0)%, lower than that in the SCI group ( P<0.01); the cardiomyocyte pyroptosis rate in the SCI+AS-IV+EX527 group was (22.5±5.9)%, higher than that in the SCI+AS-IV group ( P<0.01), yet lower than that in the SCI group ( P<0.01). Conclusions:AS-IV can significantly reduce acute myocardial injury in rats with high-level SCI. Its mechanism may involve activating the myocardial SIRT1/PGC-1α signaling pathway, protecting the mitochondria, enhancing the ability to resist oxidative stress, and effectively inhibiting the NLRP3 inflammasome-mediated pyroptosis pathway.
7.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
9.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
10.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.

Result Analysis
Print
Save
E-mail