1.Mechanism of Ferroptosis in Regulating Chronic Heart Failure and Traditional Chinese Medicine Prevention and Treatment Based on Qi Deficiency and Stagnation: A Review
Ziyang YUAN ; Yan ZHANG ; Wei ZHANG ; Yaqin WANG ; Wenjun MAO ; Guo YANG ; Xuewei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):248-255
Chronic heart failure (CHF) is the final stage of cardiovascular diseases. It is a complex syndrome, with dyspnea and edema as the main clinical manifestations, and it is characterized by complex disease conditions, difficult cure, and high mortality. Ferroptosis, a new type of programmed cell death, is different from other types of programmed cell death. Ferroptosis is iron-dependent, accompanied by lipid peroxide accumulation and mitochondrial shrinkage, becoming a hot research topic. Studies have confirmed that ferroptosis plays a key role in the occurrence and development of CHF. The regulation of ferroptosis may become a potential target for the treatment of CHF in the future. The theory of Qi deficiency and stagnation refers to the pathological state of original Qi deficiency and abnormal transportation and distribution of Qi, blood, and body fluid, which has guiding significance for revealing the pathogenesis evolution of some chronic diseases. We believe that Qi deficiency and stagnation is a summary of the pathogenesis of ferroptosis in CHF. Deficiency of Qi (heart Qi) is the root cause of CHF, and stagnation (phlegm turbidity and blood stasis) is the branch of this disease. The two influence each other in a vicious circle to promote the development of this disease. Traditional Chinese medicine (TCM) plays an important role in the treatment of CHF, improving the prognosis and quality of life of CHF patients. This paper explores the correlation between the theory of Qi deficiency and stagnation and the mechanism of ferroptosis in CHF. Furthermore, this paper reviews the mechanism of Chinese medicines and compound prescriptions in preventing and treating CHF by regulating ferroptosis according to the principles of replenishing Qi and dredging to remove stagnation, aiming to provide new ideas and methods for the treatment of CHF with TCM.
2.1 case of recurrent nasal vestibular aggressive angiomyxoma.
Yaqin WANG ; Jianwei AI ; Jingyi ZHAO ; Yuezhi KANG ; Suying GUO ; Junge WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(9):886-893
Invasive angiomyxoma(AAM) is characterized by unclear boundaries, non enveloped glial growth, high recurrence rate, and belongs to a benign tumor, but it is invasive and grows slowly. A patient with recurrent left vestibular invasive angiomyxoma was admitted to the Otorhinolaryngology ward of Beijing Traditional Chinese Medicine Hospital Affiliated with Capital Medical University. The patient underwent two repeated surgeries and underwent a combined internal and external nasal approach for the removal of the nasal vestibular angiomyxoma. The patient recovered well after the surgery and has not recurred since follow-up.
Humans
;
Myxoma/pathology*
;
Neoplasm Recurrence, Local
;
Nose Neoplasms/pathology*
3.A CYP80B enzyme from Stephania tetrandra enables the 3'-hydroxylation of N-methylcoclaurine and coclaurine in the biosynthesis of benzylisoquinoline alkaloids.
Yaoting LI ; Yuhan FENG ; Wan GUO ; Yu GAO ; Jiatao ZHANG ; Lu YANG ; Chun LEI ; Yun KANG ; Yaqin WANG ; Xudong QU ; Jianming HUANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):630-640
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant metabolites renowned for their pharmacological properties. However, sustainable sources for these compounds remain limited. Consequently, researchers are focusing on elucidating BIA biosynthetic pathways and genes to explore alternative sources using synthetic biology approaches. CYP80B, a family of cytochrome P450 (CYP450) enzymes, plays a crucial role in BIA biosynthesis. Previously reported CYP80Bs are known to catalyze the 3'-hydroxylation of (S)-N-methylcoclaurine, with the N-methyl group essential for catalytic activity. In this study, we successfully cloned a full-length CYP80B gene (StCYP80B) from Stephania tetrandra (S. tetrandra) and identified its function using a yeast heterologous expression system. Both in vivo yeast feeding and in vitro enzyme analysis demonstrated that StCYP80B could catalyze N-methylcoclaurine and coclaurine into their respective 3'-hydroxylated products. Notably, StCYP80B exhibited an expanded substrate selectivity compared to previously reported wild-type CYP80Bs, as it did not require an N-methyl group for hydroxylase activity. Furthermore, StCYP80B displayed a clear preference for the (S)-configuration. Co-expression of StCYP80B with the CYP450 reductases (CPRs, StCPR1, and StCPR2), also cloned from S. tetrandra, significantly enhanced the catalytic activity towards (S)-coclaurine. Site-directed mutagenesis of StCYP80B revealed that the residue H205 is crucial for coclaurine catalysis. Additionally, StCYP80B exhibited tissue-specific expression in plants. This study provides new genetic resources for the biosynthesis of BIAs and further elucidates their synthetic pathway in natural plant systems.
Cytochrome P-450 Enzyme System/chemistry*
;
Benzylisoquinolines/chemistry*
;
Hydroxylation
;
Plant Proteins/chemistry*
;
Alkaloids/metabolism*
;
Stephania tetrandra/genetics*
4.Role of Mitophagy in Prevention and Treatment of Heart Failure Based on PINK1/Parkin Pathway and Treatment with Traditional Chinese Medicine: A Review
Ziyang YUAN ; Yan ZHANG ; Wei ZHANG ; Yaqin WANG ; Wenjun MAO ; Guo YANG ; Xuewei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):262-271
Heart failure is a group of complex clinical syndromes that represent the final stage of cardiovascular disease development, characterized by an extremely high mortality rate. However, due to the complexity of the pathological mechanisms, an effective treatment method has not yet been found. Mitochondria are among the most critical organelles in cells, playing an essential role in energy supply and widely participating in various life activities, such as the regulation of oxidative stress and apoptosis. The normal functioning of mitochondria is crucial for maintaining the body's normal life activities. In recent years, studies have found that mitochondrial dysfunction is associated with the occurrence and progression of various diseases, particularly closely related to the onset of heart failure. An imbalance in mitochondrial homeostasis is a key factor in cardiomyocyte death and the onset of heart failure. Mitochondrial autophagy, as a means of regulating mitochondrial homeostasis, is significant for the prevention and treatment of heart failure. Traditional Chinese medicine (TCM) therapy is a unique treatment approach in China now widely applied in clinical practice, demonstrating significant efficacy in treating heart failure, with unique advantages. Modern pharmacological research indicates that Chinese medicine monomers and compounds can target and regulate mitochondrial homeostasis in cardiomyocytes, affect mitochondrial autophagy, and protect cardiomyocytes, though the specific mechanisms remain unclear. Therefore, this paper explored the mechanisms of the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway in mitochondrial autophagy and heart failure, reviewed the effects of PINK1/Parkin-mediated mitochondrial autophagy on heart failure, and discussed the therapeutic effects of PINK1/Parkin-mediated mitochondrial autophagy on heart failure in conjunction with TCM. This paper is expected to provide new ideas and methods for the prevention and treatment of heart failure from the perspective of PINK1/Parkin regulation of mitochondrial autophagy.
5.Genetic analysis of transcription factors in dopaminergic neuronal development in Parkinson’s disease
Yuwen ZHAO ; Lixia QIN ; Hongxu PAN ; Tingwei SONG ; Yige WANG ; Xiaoxia ZHOU ; Yaqin XIANG ; Jinchen LI ; Zhenhua LIU ; Qiying SUN ; Jifeng GUO ; Xinxiang YAN ; Beisha TANG ; Qian XU
Chinese Medical Journal 2024;137(4):450-456
Background::Genetic variants of dopaminergic transcription factor-encoding genes are suggested to be Parkinson’s disease (PD) risk factors; however, no comprehensive analyses of these genes in patients with PD have been undertaken. Therefore, we aimed to genetically analyze 16 dopaminergic transcription factor genes in Chinese patients with PD.Methods::Whole-exome sequencing (WES) was performed using a Chinese cohort comprising 1917 unrelated patients with familial or sporadic early-onset PD and 1652 controls. Additionally, whole-genome sequencing (WGS) was performed using another Chinese cohort comprising 1962 unrelated patients with sporadic late-onset PD and 1279 controls.Results::We detected 308 rare and 208 rare protein-altering variants in the WES and WGS cohorts, respectively. Gene-based association analyses of rare variants suggested that MSX1 is enriched in sporadic late-onset PD. However, the significance did not pass the Bonferroni correction. Meanwhile, 72 and 1730 common variants were found in the WES and WGS cohorts, respectively. Unfortunately, single-variant logistic association analyses did not identify significant associations between common variants and PD. Conclusions::Variants of 16 typical dopaminergic transcription factors might not be major genetic risk factors for PD in Chinese patients. However, we highlight the complexity of PD and the need for extensive research elucidating its etiology.
6.Screening of key differentially expressed genes involved in osteogenic differentiation of lower limb vascular smooth muscle cells and validation
Yingqun NI ; Mao YANG ; Di YANG ; Chenglin GUO ; Wenjun ZHU ; Yaqin YU ; Qin LU ; Jinzhi LUO ; Chunqin WU ; Zhaohui FANG
Journal of Jilin University(Medicine Edition) 2024;50(3):620-627
Objective:To screen the differentially expressed genes(DEGs)under high phosphate-induced calcification in the vascular smooth muscle cells(VSMCs)by mRNA high-throughput sequencing technology,and to analyze the key genes and signaling pathways involved in the VSMCs calcification.Methods:The human VSMCs were divided into control group and model group.The cells in model group was exposed to the high-phosphate medium,while the cells in control group were cultured in DMEM supplemented with 10%fetal bovine serum under the same conditions.The VSMCs in two groups,stably transfected,were cultured for 12 d.The morphology of the cells in two groups were observed and photographed under inverted microscope.The DEGs were selected by Hisat2 software,and Gene Ontology(GO)functional and Kyoto Encyclopedia of Genes and Genomes(KEGG)signaling pathway enrichment analysis were performed by Stringtie software from three aspects,such as biological processes(BP),molecular functions(MF),and cellular components(CC).The calcification of the cells in two groups was observed by Von Kossa staining method.Real-time fluorescence quantitative PCR(RT-qPCR)method was used to analyze the expression levels of alkaline phosphatase(ALP),bone morphogenetic protein 2(BMP2),alpha-smooth muscle actin(α-SMA),tumor protein 53(Tp53),glutathione peroxidase 4(GPX4),ferritin light chain 1(Ftl1),and glycosylphosphatidylinositol-specific phospholipase D1(GPLD1)mRNA in the cells in two groups.Results:Compared with control group,there were 2 524 DEGs in the cells in model group,and there were 1 368 upregulated DEGs and 1 156 downregulated DEGs.Clustering of DEGs between the cells in two groups was distinct.The GO functional and KEGG pathway enrichment analysis results showed that the upregulated DEGs were primarily involved in regulating the microtubule cytoskeleton,cell polarity,protein localization,and cell cycle regulation among BPs;in constructing cell membrane,microtubule organization,chromosomes,and kinetochore among CCs;and functioning in phosphatidylinositol phosphate,Rho GTPase protein binding,transmembrane transport,and protein kinase regulatory activity among MFs.Downregulated DEGs were mainly involved in cytoplasmic translation,protein membrane localization,mRNA metabolism,and protein endoplasmic reticulum localization among BPs;in forming ribosome subunits,cell membrane,and autophagy among CCs;and functioning in single-stranded DNA,ribonucleoprotein complex,growth factor binding,regulating protein kinase activity,and catalytic activity among MFs.Seven signaling pathways were significantly enriched in upregulated genes,most notably in the biosynthesis of glycosylphosphatidylinositol(GPI)anchors;whereas 18 signaling pathways were significantly enriched in the downregulated genes,most notably in ferroptosis.The RT-qPCR results showed that compared with control group,the expression levels of GPX4,Ftl1,and Tp53 mRNA in the cells in model group were significantly decreased(P<0.01),while the expression level of GPLD1 mRNA was significantly increased(P<0.01);compared with control group,the expression level of α-SMA mRNA in the cells in model group was significantly decreased(P<0.01),and the expression levels of ALP and BMP2 mRNA were significantly increased(P<0.01).Conclusion:The VSMCs underwent calcification and normal cells exhibit the DEGs.The key signaling pathways in the calcification induced by high phosphate in the VSMCs include ferroptosis and GPI anchor biosynthesis,mediated primarily through GPX4,Ftl1,Tp53,and GPLD1.
7.Correlation between gross tumor volume and prognosis of patients with esophageal cancer receiving radiotherapy
Zhetao MI ; Qi LI ; Yaqin ZHENG ; Dan GUO
Cancer Research and Clinic 2024;36(10):757-761
Objective:To explore the correlation between gross tumor volume (GTV) and prognosis of patients with esophageal cancer undergoing radiotherapy.Methods:A retrospective cohort study was conducted. The clinical data of 130 newly diagnosed esophageal squamous cell carcinoma patients who received radiotherapy at Shanxi Province Cancer Hospital from February 2016 to June 2018 were analyzed. All patients underwent conformal intensity-modulated radiotherapy (IMRT) for esophageal lesions. Pinnacle planning system was used to calculate GTV, and GTV classification was performed: GTV ≤ 30 cm 3 was classified as grade Ⅰ, GTV > 30 cm 3 and ≤ 60 cm 3 was classified as grade Ⅱ, and GTV > 60 cm 3 was classified as grade Ⅲ. Kaplan-Meier method was used to analyze the progression free survival (PFS) and overall survival (OS) of patients, and the multivariate Cox proportional hazards model was used to analyze the independent influencing factors of poor PFS and OS. Results:The median age of 130 patients [ M ( Q1, Q3)] was 59 years old (56 years old, 69 years old), with 90 males and 40 females; Karnofsky performance scores were all ≥ 70 points; tumors were located in the neck in 10 cases, upper chest in 34 cases, middle chest in 55 cases, and lower chest in 31 cases; clinical staging for esophageal carcinoma treated with non-surgical methods: 3 cases in stage Ⅰ, 37 cases in stage Ⅱ, 79 cases in stage Ⅲ, and 11 cases in stage Ⅳ; 25 cases were classified as GTV grade Ⅰ, 62 cases as GTV grade Ⅱ, and 43 cases as GTV grade Ⅲ. The 1-year PFS rate of 130 patients was 55%, the 2-year PFS rate was 19%, and the median PFS time was 14 months; the 1-year OS rate was 76%, the 2-year OS rate was 32%, and the median OS time was 20 months. PFS and OS of patients in stages Ⅰ+Ⅱ, Ⅲ and Ⅳ deteriorated sequentially, and the differences between the three groups were statistically significant (both P < 0.001); the PFS and OS of patients with GTV grades Ⅰ, Ⅱ and Ⅲ deteriorated sequentially, and the differences in PFS and OS between the three groups were statistically significant (both P < 0.001); there were no statistically significant differences in PFS and OS among patients of different genders, ages, and tumor locations (all P > 0.05). The results of multivariate Cox regression analysis showed that high clinical staging (stage Ⅳ vs. stage Ⅰ, HR = 8.34, 95% CI: 3.88-17.94, P < 0.001) and high GTV grading (grade Ⅱ vs. grade Ⅰ: HR = 6.81, 95% CI: 3.39-13.67, P < 0.001; grade Ⅲ vs. grade Ⅰ: HR = 23.97, 95% CI: 10.81-53.14, P < 0.001) were independent risk factors for poor PFS; high clinical staging (stage Ⅳ vs. stage Ⅰ: HR = 9.94, 95% CI: 4.50-21.97, P < 0.001) and high GTV grading (grade Ⅱ vs. grade Ⅰ: HR = 13.55, 95% CI: 5.58-32.91, P < 0.001; grade Ⅲ vs. grade Ⅰ: HR = 35.01, 95% CI: 13.57-90.34, P < 0.001) were independent risk factors for poor OS. Conclusions:GTV is associated with the prognosis of patients with esophageal cancer undergoing radiotherapy.
8.A novel nomogram-based model to predict the postoperative overall survival in patients with gastric and colorectal cancer
Siwen WANG ; Kangjing XU ; Xuejin GAO ; Tingting GAO ; Guangming SUN ; Yaqin XIAO ; Haoyang WANG ; Chenghao ZENG ; Deshuai SONG ; Yupeng ZHANG ; Lingli HUANG ; Bo LIAN ; Jianjiao CHEN ; Dong GUO ; Zhenyi JIA ; Yong WANG ; Fangyou GONG ; Junde ZHOU ; Zhigang XUE ; Zhida CHEN ; Gang LI ; Mengbin LI ; Wei ZHAO ; Yanbing ZHOU ; Huanlong QIN ; Xiaoting WU ; Kunhua WANG ; Qiang CHI ; Jianchun YU ; Yun TANG ; Guoli LI ; Li ZHANG ; Xinying WANG
Chinese Journal of Clinical Nutrition 2024;32(3):138-149
Objective:We aimed to develop a novel visualized model based on nomogram to predict postoperative overall survival.Methods:This was a multicenter, retrospective, observational cohort study, including participants with histologically confirmed gastric and colorectal cancer who underwent radical surgery from 11 medical centers in China from August 1, 2015 to June 30, 2018. Baseline characteristics, histopathological data and nutritional status, as assessed using Nutrition Risk Screening 2002 (NRS 2002) score and the scored Patient-Generated Subjective Global Assessment, were collected. The least absolute shrinkage and selection operator regression and Cox regression were used to identify variables to be included in the predictive model. Internal and external validations were performed.Results:There were 681 and 127 patients in the training and validation cohorts, respectively. A total of 188 deaths were observed over a median follow-up period of 59 (range: 58 to 60) months. Two independent predictors of NRS 2002 and Tumor-Node-Metastasis (TNM) stage were identified and incorporated into the prediction nomogram model together with the factor of age. The model's concordance index for 1-, 3- and 5-year overall survival was 0.696, 0.724, and 0.738 in the training cohort and 0.801, 0.812, and 0.793 in the validation cohort, respectively.Conclusions:In this study, a new nomogram prediction model based on NRS 2002 score was developed and validated for predicting the overall postoperative survival of patients with gastric colorectal cancer. This model has good differentiation, calibration and clinical practicability in predicting the long-term survival rate of patients with gastrointestinal cancer after radical surgery.
9.Analysis of copy number variation in AZF region of Y chromosome in patients with spermatogenic failure.
Hui GAO ; Lijuan WANG ; Yaqin SONG ; Di MA ; Rui NIE ; Yuhua HU ; Huiyan HE ; Ruanzhang ZHANG ; Shayan WANG ; Hui GUO
Chinese Journal of Medical Genetics 2023;40(9):1068-1074
OBJECTIVE:
To explore the characteristics of copy number variation (CNV) within the Y chromosome azoospermia factor (AZF) region in patients with spermatogenesis disorders in the Shenzhen area.
METHODS:
A total of 123 patients with spermatogenesis disorders who had visited Shenzhen People's Hospital from January 2016 to October 2022 (including 73 patients with azoospermia and 50 patients with oligozoospermia) and 100 normal semen males were selected as the study subjects. The AZF region was detected with multiplex ligation-dependent probe amplification (MLPA), and the correlation between the CNV in the AZF region and spermatogenesis disorders was analyzed using the chi-square test or Fisher's exact test.
RESULTS:
19 CNV were detected among 53 patients from the 223 samples, including 20 cases (27.40%, 20/73) from the azoospermia group, 19 cases (38%, 19/50) from the oligozoospermia group, and 14 cases (14%, 14/100) from the normal control group. In the azoospermia, oligozoospermia, and normal control groups, the detection rates for CNV related to the AZFa region (including AZFab and AZFabc) were 5.48% (4/73), 2.00% (1/50), and 0 (0/100), respectively. The detection rates for the AZFb region (including the AZFbc region) were 6.85% (5/73), 0 (0/50), and 0 (0/100), respectively. The detection rates for gr/gr deletions in the AZFc region were 2.74% (2/73), 6.00% (3/50), and 9.00% (9/100), respectively, and those for b2/b4 deletions in the AZFc region were 2.74% (2/73), 10.00% (5/50), and 0 (0/100), respectively. The detection rates for complex rearrangements in the AZFc region were 6.85% (5/73), 18.00% (9/50), and 3.00% (3/100), respectively. Statistical analysis showed no significant difference in the detection rate of gr/gr deletions between the three groups (Fisher's Exact Test value = 2.712, P = 0.249); the differences in the detection rate of b2/b4 deletions between the three groups were statistically significant (Fisher's Exact Test value = 9.489, P = 0.002); the differences in the detection rate of complex rearrangements in the AZFc region between the three groups were statistically significant (Fisher's Exact Test value = 9.493, P = 0.006). In this study, a rare AZFa region ARSLP1 gene deletion (involving SY86 deletion) was detected in a patient with oligozoospermia.
CONCLUSION
CNV in the AZFa and AZFb regions have a severe impact on spermatogenesis, but partial deletion in the AZFa region (ARSLP1 gene deletion) has a minor impact on spermatogenesis. The b2/b4 deletion and complex rearrangement in the AZFc region may be risk factors for male infertility. The gr/gr deletion may not serve as a risk factor for male infertility in the Shenzhen area.
Humans
;
Male
;
Azoospermia/genetics*
;
DNA Copy Number Variations
;
Oligospermia/genetics*
;
Infertility, Male/genetics*
;
Y Chromosome
10.Prenatal diagnosis and genetic analysis of a fetus with partial deletion of Yq and mosaicism of 45,X.
Lijuan WANG ; Hui GUO ; Qi LIN ; Zhiyang HU ; Huiyan HE ; Mei YE ; Zhuojian LIANG ; Wenlong HU ; Hui GAO ; Di MA ; Yaqin SONG
Chinese Journal of Medical Genetics 2023;40(6):744-749
OBJECTIVE:
To carry out prenatal diagnosis and genetic analysis for a fetus with disorders of sex development (DSDs).
METHODS:
A fetus with DSDs who was identified at the Shenzhen People's Hospital in September 2021 was selected as the study subject. Combined molecular genetic techniques including quantitative fluorescence PCR (QF-PCR), multiplex ligation-dependent probe amplification (MLPA), chromosomal microarray analysis (CMA), quantitative real-time PCR (qPCR), as well as cytogenetic techniques such as karyotyping analysis and fluorescence in situ hybridization (FISH) were applied. Ultrasonography was used to observe the phenotype of sex development.
RESULTS:
Molecular genetic testing suggested that the fetus had mosaicism of Yq11.222qter deletion and X monosomy. Combined with the result of cytogenetic testing, its karyotype was determined as mos 45,X[34]/46,X,del(Y)(q11.222)[61]/47,X,del(Y)(q11.222),del(Y)(q11.222)[5]. Ultrasound examination suggested hypospadia, which was confirmed after elective abortion. Combined the results of genetic testing and phenotypic analysis, the fetus was ultimately diagnosed with DSDs.
CONCLUSION
This study has applied a variety of genetic techniques and ultrasonography to diagnose a fetus with DSDs with a complex karyotype.
Prenatal Diagnosis
;
Mosaicism
;
Chromosomes, Human, X
;
Chromosomes, Human, Y
;
Humans
;
Male

Result Analysis
Print
Save
E-mail