1.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
2.Yinqiao Powder affects macrophage polarization-mediated herpes simplex keratitis through the cGAS-STING-IRF3 molecular pathway
Ning YAO ; Rongli ZHAO ; Xuemei YANG ; Yuhuan LIU ; Yaqin DING ; Yan DAI
International Eye Science 2025;25(8):1227-1233
AIM: To investigate the specific molecular mechanism of Yinqiao Powder in affecting macrophage polarization in herpes simplex keratitis(HSK)through the cyclic GMP-AMP synthetase(cGAS)-stimulator of interferon genes(STING)-interferon regulatory factor 3(IRF3)molecular pathway.METHODS:Human corneal epithelial cells(HCE-T)were divided into control, HSK, and HSK + Yinqiao Powder groups. M0 macrophages were grouped as Ctrl, HSV-1, HSV-1+oe-cGAS, HSV-1+Yinqiao Powder, and HSV-1+oe-cGAS+Yinqiao Powder. Conditional medium(CM)from each group of M0 macrophages was collected to intervene in HCE-T cells and divided into Ctrl-CM, HSV-1-CM, HSV-1+oe-cGAS-CM, and HSV-1+Yinqiao Powder-CM groups. Cell viability was detected by MTT assay, and apoptosis was detected by TUNEL assay. ELISA was used to detect the concentrations of Arg-1 and iNOS in cell supernatants, and Western blotting was used to detect the relative protein expressions of cGAS, STING, and IRF3. Balb/c mice were divided into control, model, and drug groups. The model and drug groups were inoculated with HSV-1 on the cornea of Balb/c mice using the corneal scratch method to construct an HSK mouse model, and the drug group was treated with Yinqiao Powder. The incidence and mortality of the three groups were compared on days 1, 3, 5, 7, and 14 after modeling.RESULTS:Compared with the control group, the HCE-T cell viability in the HSK group was decreased but apoptosis was increased, which was reversed by Yinqiao Powder intervention. Compared with the Ctrl group, the Arg-1 concentration in the cell supernatant of the HSV-1 group was decreased, the iNOS concentration was increased, and the protein expressions of cGAS, STING, and IRF3 were decreased. Compared with the HSV-1 group, the Arg-1 concentration was increased, the iNOS concentration was decreased, and the protein expressions of cGAS, STING, and IRF3 were enhanced in the HSV-1+oe-cGAS group and the HSV-1+Yinqiao Powder group, and the same results were obtained in the HSV-1+oe-cGAS+Yinqiao Powder group. Compared with the Ctrl-CM group, the HCE-T cell viability was decreased and apoptosis was increased in the HSV-1-CM group, which was reversed by overexpressing cGAS in macrophages or intervening with Yinqiao Powder. In vivo experiments found that Yinqiao Powder intervention could improve the pathological progression of keratitis.CONCLUSION:Yinqiao Powder inhibits M1 polarization of macrophages through the cGAS-STING-IRF3 molecular pathway, thereby delaying the progression of HSK.
3.Influencing factors and clinical treatment of severe complications after unilateral pneumonectomy in treating tuberculous destroyed lung
Xiao LI ; Ning WANG ; Lei BAO ; Zhiqiang WU ; Gang LI ; Cong CAI ; Yijie SONG ; Dan LI ; Banggui WU ; Liangshuang JIANG ; Xiaojun YAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):626-633
Objective To evaluate the surgical efficacy of unilateral pneumonectomy for the treatment of tuberculous destroyed lung, analyze the causes of severe postoperative complications, and explore clinical management strategies. Methods A retrospective analysis was conducted on the clinical data of patients with tuberculous destroyed lung who underwent unilateral pneumonectomy at the Public Health Clinical Center of Chengdu from 2017 to 2023. Postoperative severe complications were statistically analyzed. Patients were divided into a non-severe complication group and a severe-complication group, and the causes, management, and outcomes of complications were analyzed. Results A total of 134 patients were included, comprising 69 males and 65 females, with a mean age of 17-73 (40.43±12.69) years. There were 93 patients undergoing left pneumonectomy and 41 patients undergoing right pneumonectomy. Preoperative sputum smear was positive in 35 patients, all of which converted to negative postoperatively. There were 58 patients with hemoptysis preoperatively, and none experienced hemoptysis postoperatively. Postoperative incisional infection occurred in 8 (5.97%) patients, and postoperative pulmonary infection in 26 (19.40%) patients. Severe postoperative complications occurred in 17 (12.69%) patients, including empyema in 9 (6.72%) patients, bronchopleural fistula with empyema in 1 (0.75%) patient, severe pneumonia in 3 (2.24%) patients, postpneumonectomy syndrome in 1 (0.75%) patient, chylothorax in 1 (0.75%) patient, ketoacidosis in 1 (0.75%) patient, and heart failure with severe pneumonia in 1 (0.75%) patient. Perioperative mortality occurred in 2 (1.49%) patients, both of whom underwent right pneumonectomy. Multivariate logistic regression analysis revealed that a history of ipsilateral thoracic surgery, concomitant Aspergillus infection, and greater blood loss were independent risk factors for severe complications following unilateral pneumonectomy for tuberculous destroyed lung (P<0.05). Conclusion Unilateral pneumonectomy for patients with tuberculous destroyed lung can significantly improve the clinical cure rate, sputum conversion rate, and hemoptysis cessation rate. However, there is a certain risk of severe perioperative complications and mortality, requiring thorough perioperative management and appropriate management of postoperative complications.
4.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
5.Interpretation of WHO report 2020-2024: Global tuberculosis report and analysis of key data for China
Ning WANG ; Xixi FENG ; Sheng GONG ; Liangshuang JIANG ; Xiaojun YAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(09):1209-1215
Tuberculosis (TB) remains a major global public health threat. The World Health Organization (WHO) 2020–2024 global TB reports provide a comprehensive overview of the TB situation from 2019 to 2023. In 2023, TB re-emerged as the world's leading infectious killer, with an estimated 10.8 million new cases. While the growth in the incidence rate slowed, the number of deaths decreased to 1.25 million. The COVID-19 pandemic significantly disrupted TB control efforts in 2020–2021. As control measures are gradually restored, a positive trend in TB control is emerging. However, significant regional disparities in incidence persist, with eight high-burden countries, including India and China, accounting for over two-thirds of the global total. In 2023, global treatment coverage for drug-resistant TB (DR-TB) was 44.00% with a treatment success rate of 68.00%; yet, with 400 000 new drug-resistant cases, the control situation remains severe. China has achieved remarkable progress in TB control: new cases fell to 741 000 in 2023 (an incidence of 52 per 100 000); mortality decreased significantly; its share of the global DR-TB burden dropped from 14.00% to 7.30%; and the TB/HIV co-infection rate declined from 1.68% in 2019 to 0.66% in 2023, outperforming the global average. Globally, control measures continue to be optimized: treatment coverage increased from 70.00% in 2019 to 75.00% in 2023, the number of people receiving preventive therapy grew to 4.7 million, and rapid diagnostic coverage reached 48.00%. In China, the number of patients treated recovered to 565 000 in 2023, and rapid diagnostic coverage rose to 74.00%. Although technological innovations have enhanced the efficiency of prevention, screening, diagnosis, treatment, and management, achieving the 2030 End TB Strategy goals will require strengthening TB management, building primary healthcare capacity, and targeting interventions for high-risk populations, while balancing resource allocation with technological innovation to address the challenges of a heterogeneous global epidemic.
6.Molecular mechanism of Siwu Decoction in treating premature ovarian insufficiency based on mitophagy pathway modulated and mediated by estrogen receptor subtype.
Si CHEN ; Ze-Ye ZHANG ; Nan CONG ; Jiao-Jiao YANG ; Feng-Ming YOU ; Yao CHEN ; Ning WANG ; Pi-Wen ZHAO
China Journal of Chinese Materia Medica 2025;50(8):2173-2183
In this study, we explored the pharmacological effects of Siwu Decoction in treating premature ovarian insufficiency(POI) and its molecular mechanism based on the mitophagy pathway modulated and mediated by estrogen receptor(ER) subtypes. Female Balb/c mice were divided into a control group, model group, as well as high-dose and low-dose groups of Siwu Decoction. The POI mice model was constructed by intraperitoneal injection of cisplatin. The high-dose and low-dose groups of Siwu Decoction were administered intragastrically with Siwu Decoction each day for 14 days. During this period, we monitored the estrous cycle and body weight of the mice and calculated the ovarian index. The morphology of the ovaries was detected by hematoxylin-eosin(HE) staining, and the number of primordial follicles was counted. The apoptosis of the ovarian tissue was detected by TUNEL staining. The expression levels of anti-Müllerian hormone(AMH), apoptosis-associated and mitophagy-associated proteins, ER subtypes, and the expression levels of key proteins of its mediated molecular pathways were detected by Western blot and immunohistochemistry. KGN cells were divided into a control group, model group, Siwu Decoction group, and gene silencing group. The apoptosis model was induced by H_2O_2, and PTEN-induced putative kinase 1(PINK1) gene silencing was induced by siRNA transfection. The Siwu Decoction group and gene silencing group were added to the medium containing Siwu Decoction. Cell viability was detected by CCK-8 assay. Cell senescence was detected by senescence-associated-β-galactosidase. The expression levels of apoptosis-associated and mitophagy-associated proteins were detected by Western blot. The results of in vivo experiments showed that compared with the model group, the mice in the high-dose and low-dose groups of Siwu Decoction significantly recovered the rhythm of the estrous cycle, and the levels of ovarian index, number of primordial follicles, and expression of AMH, representative indexes of ovarian function, were significantly higher, suggesting that the level of ovarian function was significantly improved. The expression levels of the apoptosis-related proteins, cytochrome C(Cyt C), cysteinyl aspartate specific proteinase 3(caspase 3), B-cell lymphoma-2(Bcl-2)-associated X(Bax), and mitophagy-associated indicator(Beclin 1) were significantly decreased, and the expression levels of Bcl-2 was significantly elevated. The positive area of TUNEL was significantly reduced, suggesting that the apoptosis level of the ovaries was significantly reduced. The expression levels of PINK1, Parkin, and sequestosome 1(p62) were significantly reduced, suggesting that the level of ovarian mitophagy was significantly down-regulated. The expression levels of ERα and ERβ were significantly elevated, and the ratio of ERα/ERβ was significantly reduced. The expression levels of key proteins in the pathway, phosphoinositide 3-kinase(PI3K) and protein kinase B(Akt), were significantly reduced, suggesting that the regulation of ER subtypes and the mediation of PI3K/Akt pathway were the key mechanisms. In vitro experiments showed that compared with the model group, the proportion of senescent cells in the Siwu Decoction group was significantly reduced. Cyt C, caspase 3, Beclin 1, Parkin, and p62 were significantly reduced, which was in line with in vivo experimental results. The proportion of senescent cells and the expression level of the above proteins were further significantly reduced after PINK1 silencing. It can be seen that Siwu Decoction can regulate the expression level and proportion of ER subtypes in KGN cells, then mediate the PI3K/Akt pathway to inhibit excessive mitophagy and apoptosis, and exert therapeutic effects of POI.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mitophagy/drug effects*
;
Primary Ovarian Insufficiency/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Humans
;
Receptors, Estrogen/genetics*
;
Apoptosis/drug effects*
;
Ovary/metabolism*
;
Signal Transduction/drug effects*
;
Anti-Mullerian Hormone/genetics*
7.Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia.
Hao-Wei BAI ; Na LI ; Yu-Xiang ZHANG ; Jia-Qiang LUO ; Ru-Hui TIAN ; Peng LI ; Yu-Hua HUANG ; Fu-Rong BAI ; Cun-Zhong DENG ; Fu-Jun ZHAO ; Ren MO ; Ning CHI ; Yu-Chuan ZHOU ; Zheng LI ; Chen-Cheng YAO ; Er-Lei ZHI
Asian Journal of Andrology 2025;27(2):268-275
Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Humans
;
Male
;
Azoospermia/genetics*
;
Meiosis/genetics*
;
Spermatogenesis/genetics*
;
Adult
;
Exome Sequencing
;
Microtubule-Associated Proteins/genetics*
;
Alleles
;
Infertility, Male/genetics*
8.Clinical Study of Ibrutinib in the Treatment of Relapsed/Refractory Diffuse Large B-Cell Lymphoma.
Yu-Ning YAO ; Hao JIANG ; Lu-Min TANG ; Ye LOU
Journal of Experimental Hematology 2025;33(3):784-788
OBJECTIVE:
To study the clinical effects of ibrutinib in the treatment of relapsed/refractory diffuse large B-cell lymphoma (RRDLBCL).
METHODS:
A total of 101 patients with RRDLBCL in Daqing People's Hospital from September 2019 to September 2022 were selected. 45 patients were received ibrutinib monotherapy, 36 patients were received a combination therapy of ibrutinib, rituximab, and lenalidomide, and 20 patients were received a combination therapy of ibrutinib and lenalidomide. The clinical effects were observed.
RESULTS:
The median duration of treatment for all patients was 4 (2-9) months. The disease control rates(DCR) and objective response rates(ORR) in the ibrutinib monotherapy group were 46.67% and 26.67%, respectively. In the combination therapy group of ibrutinib, rituximab, and lenalidomide, the DCR and ORR were 69.44% and 44.44%, respectively. In the combination therapy group of ibrutinib and lenalidomide, the DCR and ORR were 60.00% and 35.00%, respectively. The DCR and ORR in the combination therapy group of ibrutinib, rituximab, and lenalidomide were significantly higher than those in the ibrutinib monotherapy group (P < 0.05). There were no significant differences in DCR and ORR between the combination therapy group of ibrutinib and lenalidomide and the ibrutinib monotherapy group (P >0.05). The median follow-up time of all patients was 15 (5-35) months, with a median overall survival(OS) of 21.0 (15.8-26.2) months and a median progression-free survival(PFS) of 14.0 (12.1-15.9) months. In the ibrutinib monotherapy group, the median OS and PFS were 15.0 (12.1-17.9) months and 12.0 (11.0-13.0) months, respectively. In the combination therapy group of ibrutinib and lenalidomide, the median OS and PFS were 22.0 (13.3-30.7) months and 16.0 (14.1-19.7) months, respectively. In the combination therapy group of ibrutinib, rituximab, and lenalidomide, the median OS and PFS were 23.0 (19.7-26.3) months and 17.0 (14.8-19.1) months, respectively. The median OS and PFS in the combination therapy group of ibrutinib, rituximab, and lenalidomide were significantly higher than those in the ibrutinib monotherapy group (P < 0.05). There were no significant differences in median OS and PFS between the combination therapy group of ibrutinib and lenalidomide and the combination therapy group of ibrutinib, rituximab, and lenalidomide (P >0.05). Hematological adverse reactions included neutropenia in 14 cases (13.86%), thrombocytopenia in 16 cases (15.84%), and leukopenia in 13 cases (12.87%). Non-hematological adverse reactions mainly included nausea and vomiting in 33 cases (32.67%) and fatigue in 44 cases (43.56%).
CONCLUSION
Ibrutinib has certain clinical effects and good safety in the treatment of RRDLBCL.
Humans
;
Piperidines/therapeutic use*
;
Lymphoma, Large B-Cell, Diffuse/drug therapy*
;
Adenine/therapeutic use*
;
Rituximab/therapeutic use*
;
Lenalidomide/therapeutic use*
;
Male
;
Female
;
Middle Aged
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Adult
;
Aged
;
Pyrimidines/therapeutic use*
;
Pyrazoles/therapeutic use*
;
Treatment Outcome
9.Application of Targeted mRNA Sequencing in Fusion Genes Diagnosis of Hematologic Diseases.
Man WANG ; Ling ZHANG ; Yan CHEN ; Jun-Dan XIE ; Hong YAO ; Li YAO ; Jian-Nong CEN ; Zi-Xing CHEN ; Su-Ning CHEN ; Hong-Jie SHEN
Journal of Experimental Hematology 2025;33(4):1209-1216
OBJECTIVE:
To explore the application of targeted mRNA sequencing in fusion gene diagnosis of hematologic diseases.
METHODS:
Bone marrow or peripheral blood samples of 105 patients with abnormally elevated eosinophil proportions and 291 acute leukemia patients from January 2015 to June 2023 in the First Affiliated Hospital of Soochow University were analyzed and gene structural variants were detected by targeted mRNA sequencing.
RESULTS:
Among 105 patients with abnormally elevated eosinophil proportions, 6 cases were detected with gene structural variants, among which fusion gene testing results in 5 cases could serve as diagnostic indicators for myeloid neoplasms with eosinophilia. In addition, a IL3∷ETV6 fusion gene was detected in one patient with chronic eosinophilic leukemia, not otherwise specified. Among 119 patients with acute myeloid leukemia (AML), 38 cases were detected structural variants by targeted mRNA sequencing, accounting for 31.9%, which was significantly higher than 20.2% (24/119) detected by multiple quantitative PCR (P < 0.05). We also found one patient with AML had both NUP98∷PRRX2 and KCTD5∷JAK2 fusion genes. A total of 104 patients were detected structural variants by targeted mRNA sequencing in 172 cases with acute B-lymphoblastic leukemia who were tested negative by multiple quantitative PCR, with a detection rate of 60.5% (102/172).
CONCLUSION
Targeted mRNA sequencing can effectively detect fusion gene and has potential clinical application value in diagnosis and classificatation in hematologic diseases.
Humans
;
Hematologic Diseases/diagnosis*
;
RNA, Messenger/genetics*
;
Oncogene Proteins, Fusion/genetics*
;
Sequence Analysis, RNA
;
Leukemia, Myeloid, Acute/diagnosis*
10.Research progress of circular RNA in male reproductive disorders.
Wen-Chuan SHAO ; Liang-Yu YAO ; Ning-Hong SONG
National Journal of Andrology 2025;31(8):742-746
Male reproductive disorders have emerged as a global issue. Infertility affects 8% to 12% of couples of childbearing age. The sperm concentration and total sperm count of men have shown a significant downward trend over the past four decades, with a decrease of more than 50%. Male reproductive disorders are related to multiple factors. Circular RNA (circRNA) is a type of non-coding RNA with covalently closed circular structures. It is involved in a variety of biological processes, including gene expression regulation, protein function regulation and epigenetic regulation. Studies have shown that there are differences in the expression of circRNA in the testicles and semen between infertile patients and healthy people, suggesting that circRNA is involved in the process of spermatogenesis, and its abnormal expression is associated with male infertility. This review takes the biological functions of circRNA as the starting point and summarizes the research progress of circRNA in male reproductive disorders. CircRNA has the potential to serve as a novel biomarker due to its conservative, special structure and tissue specificity, which provides a new strategy for the clinical diagnosis of male reproductive disorders.
Humans
;
Male
;
RNA, Circular
;
Infertility, Male/genetics*
;
RNA/genetics*
;
Spermatogenesis

Result Analysis
Print
Save
E-mail