1.Rapid determination of tramadol in urine by surface-enhanced Raman spectroscopy
Xiaojing YAO ; Peiying JI ; Feng LU ; Guorong SHI ; Xiang FU
Journal of Pharmaceutical Practice and Service 2025;43(4):185-189
Objective To establish a method for rapid detection of tramadol in urine by liquid-liquid extraction(LLE)-surface-enhanced Raman spectroscopy (SERS). Methods Tramadol was extracted from urine with chloroform∶isopropyl alcohol (9∶1) extractant and detected in urine samples by enhanced Raman spectroscopy (wavelength 785 nm). Results The quantitative curve of tramadol was Y=204.35 X−465.62, r=
2.The mechanism and clinical application value of interleukin-10 family in anti-hepatic fibrosis
Qi LUO ; Biyu ZENG ; Rong ZHANG ; Liangjiang HUANG ; Lei FU ; Chun YAO
Journal of Clinical Hepatology 2025;41(4):748-754
The interleukin-10 (IL-10) family is expressed in various types of cells and has a wide range of biological functions, and it plays an important role in the development and progression of hepatic fibrosis. Hepatic fibrosis is a chronic liver disease characterized by abnormal repair of hepatic tissues after injury, activation of hepatic stellate cells, and excessive accumulation of extracellular matrix. The IL-10 family members include IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, IL-29, and IL-35, with similarities in structure and function, and changes in their expression levels are closely associated with the progression of hepatic fibrosis. Moderate upregulation of the expression of IL-10 family members can help maintain the quiescent state of hepatic stellate cells, promote the transformation of macrophages to anti-inflammatory phenotype, and regulate the activity of natural killer cells, thereby inhibiting inflammatory response, regulating cell apoptosis and autophagy, and finally reversing the progression of hepatic fibrosis. This article discusses the mechanism of action of IL-10 family members and their application in traditional Chinese medicine and Western medicine therapies, in order to provide new thoughts for the treatment of hepatic fibrosis.
3.Application of middle hepatic vein splitting and reconstruction technique in split liver transplantation from low-age donor livers
Hui TANG ; Binsheng FU ; Qing YANG ; Jia YAO ; Kaining ZENG ; Xiao FENG ; Shuhong YI ; Yang YANG
Organ Transplantation 2025;16(3):453-459
Objective To explore the feasibility and clinical experience of the middle hepatic vein splitting-reconstruction technique in split liver transplantation from low-age donor livers. Methods A retrospective analysis was conducted on the cases of two low-age donor livers that underwent middle hepatic vein splitting-reconstruction, which were transplanted into four child recipients at the Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University from January 2017 to July 2023. The surgical and postoperative conditions were summarized and analyzed. Results Donor 1 was a 6-year-old and 4-month-old girl with a body weight of 21 kg, and the obtained donor liver weighed 496 g. After splitting, the left and right liver weights were 201 g and 280 g, and transplanted into a 9-month-old boy weighing 6.5 kg and a 9-month-old boy weighing 7.5 kg, respectively. The graft to recipient weight ratio (GRWR) was 3.09% and 3.73%, respectively. Donor 2 was a 5-year-old and 8-month-old boy with a body weight of 19 kg, and the donor liver weighed 673 g. After splitting, the left and right liver weights were 230 g and 400 g, and transplanted into a 13-month-old girl weighing 9.5 kg and a 15-month-old boy weighing 12 kg. The GRWR was 2.42% and 3.33%, respectively. Both donor livers were split ex vivo, with the middle hepatic vein being completely split in the middle and reconstructed using allogeneic iliac vein and iliac artery vascular patches. According to GRWR, none of the 4 transplant livers were reduced in volume. Among the 4 recipients, one died due to postoperative portal vein thrombosis and non-function of the transplant liver, while the other three cases recovered smoothly without early or late complications. Regular follow-up was conducted until July 31, 2023, and liver function recovered well. Conclusions Under the premise of detailed assessment of the donor liver and meticulous intraoperative operation, as well as matching with suitable child recipients, low-age donor livers may be selected for splitting. The complete splitting and reconstruction of the middle hepatic vein in the middle may effectively ensure the adequate venous return of the left and right liver and provide sufficient functional liver volume.
4.Concept, design and clinical application of minimally invasive liver transplantation through laparoscopic combined upper midline incision
Shuhong YI ; Hui TANG ; Kaining ZENG ; Xiao FENG ; Binsheng FU ; Qing YANG ; Jia YAO ; Yang YANG ; Guihua CHEN
Organ Transplantation 2025;16(1):67-73
Objective To explore the technical process and clinical application of laparoscopic combined upper midline incision minimally invasive liver transplantation. Methods A retrospective analysis was conducted on 30 cases of laparoscopic combined upper midline incision minimally invasive liver transplantation. The cases were divided into cirrhosis group (15 cases) and liver failure group (15 cases) based on the primary disease. The surgical and postoperative conditions of the two groups were compared. Results All patients successfully underwent laparoscopic "clockwise" liver resection, with no cases of passive conversion to open surgery or intolerance to pneumoperitoneum. In 6 cases, the right lobe was relatively large, and the right hepatic ligaments could not be completely mobilized. One case required an additional reverse "L" incision during open surgery. All patients successfully completed the liver transplantation, with no major intraoperative bleeding, cardiovascular events, or other occurrences in the 30 patients. The model for end-stage liver disease (MELD) score in the cirrhosis group was lower than that in the liver failure group (P<0.001). There were no statistically significant differences between the two groups in terms of age, surgical time, blood loss, anhepatic phase, or cold ischemia time (all P>0.05). During the perioperative period, there was 1 case of hepatic artery embolism, 1 case of portal vein anastomotic stenosis, no complications of hepatic vein and inferior vena cava, and 3 cases of biliary anastomotic stenosis, all of which occurred in the liver failure group. Conclusions In strictly selected cases, the minimally invasive liver transplantation technique combining laparoscopic hepatectomy with upper midline incision for graft implantation has the advantages of smaller incisions, less bleeding, relatively easier operation, and faster postoperative recovery, which is worthy of clinical promotion and application.
5.Mechanisms of Intestinal Microecology in Hyperuricemia and Traditional Chinese Medicine Intervention:A Review
Mingyuan FAN ; Jiuzhu YUAN ; Hongyan XIE ; Sai ZHANG ; Qiyuan YAO ; Luqi HE ; Qingqing FU ; Hong GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):329-338
In recent years, hyperuricemia (HUA) has shown a rapidly increasing incidence and tends to occur in increasingly young people, with a wide range of cardiac, renal, joint, and cancerous hazards and all-cause mortality associations. Western medicine treatment has limitations such as large liver and kidney damage, medication restriction, and easy recurrence. The intestine is the major extra-renal excretion pathway for uric acid (UA), and the intestinal microecology can be regulated to promote UA degradation. It offers great potential to develop UA-lowering strategies that target the intestinal microecology, which are promising to provide safer and more effective therapeutic approaches. Traditional Chinese medicine (TCM) can treat HUA via multiple targets and multiple pathways from a holistic view, with low toxicity and side effects. Studies have shown that intestinal microecology is a crucial target for TCM in the treatment of HUA. However, its specific mechanism of action has not been fully elucidated. Focusing on the key role of intestinal microecology in HUA, this review explores the relationship between intestinal microecology and HUA in terms of intestinal flora, intestinal metabolites, intestinal UA transporters, and intestinal barriers. Furthermore, we summarize the research progress in TCM treatment of HUA by targeting the intestinal microecology, with the aim of providing references for the development of TCM intervention strategies for HUA and the direction of future research.
6.Pharmacokinetic study of 3 blood-absorbed components of Xiangshao sanjie oral liquid in rats with hyperplasia of mammary gland
Yu ZHANG ; Jiaming LI ; Dan PENG ; Ruoqiu FU ; Yue MING ; Zhengbi LIU ; Jingjing WANG ; Shiqi CHENG ; Hongjun XIE ; Yao LIU
China Pharmacy 2025;36(6):680-685
OBJECTIVE To explore the pharmacokinetic characteristics of 3 blood-absorbed components of Xiangshao sanjie oral liquid in rats with hyperplasia of mammary gland (HMG). METHODS Female SD rats were divided into control group and HMG group according to body weight, with 6 rats in each group. The HMG group was given estrogen+progesterone to construct HMG model. After modeling, two groups were given 1.485 g/kg of Xiangshao sanjie oral liquid (calculated by crude drug) intragastrically, once a day, for 7 consecutive days. Blood samples were collected before the first administration (0 h), and at 5, 15, 30 minutes and 1, 2, 4, 8, 12, 24 hours after the last administration, respectively. Using chlorzoxazone as the internal standard, the plasma concentrations of ferulic acid, paeoniflorin and rosmarinic acid in rats were detected by UPLC-Q/TOF-MS. The pharmacokinetic parameters [area under the drug time curve (AUC0-24 h, AUC0-∞), mean residence time (MRT0-∞), half-life (t1/2), peak time (tmax), peak concentration (cmax)] were calculated by the non-atrioventricular model using Phoenix WinNonlin 8.1 software. RESULTS Compared with the control group, the AUC0-24 h, AUC0-∞ and cmax of ferulic acid in the HMG group were significantly increased (P<0.05); the AUC0-24 h, AUC0-∞ , MRT0-∞ , t1/2 and cmax of paeoniflorin increased, but there was no significant difference between 2 groups (P>0.05); the AUC0-24 h and MRT0-∞ of rosmarinic acid were significantly increased or prolonged (P<0.05). C ONCLUSIONS In HMG model rats, the exposure of ferulic acid, paeoniflorin and rosmarinic acid in Xiangshao sanjie oral liquid all increase, and the retention time of rosmarinic acid is significantly prolonged.
7.WANG Xiuxia's Clinical Experience in Treating Hyperprolactinemia with Liver Soothing Therapy
Yu WANG ; Danni DING ; Yuehui ZHANG ; Songli HAO ; Meiyu YAO ; Ying GUO ; Yang FU ; Ying SHEN ; Jia LI ; Fangyuan LIU ; Fengjuan HAN
Journal of Traditional Chinese Medicine 2025;66(14):1428-1432
This paper summarizes Professor WANG Xiuxia's clinical experience in treating hyperprolactinemia using the liver soothing therapy. Professor WANG identifies liver qi stagnation and rebellious chong qi (冲气) as the core pathomechanisms of hyperprolactinemia. Furthermore, liver qi stagnation may transform into fire or lead to pathological changes such as spleen deficiency with phlegm obstruction or kidney deficiency with essence depletion. The treatment strategy centers on soothing the liver, with a modified version of Qinggan Jieyu Decoction (清肝解郁汤) as the base formula. Depending on different syndrome patterns such as liver stagnation transforming into fire, liver stagnation with spleen deficiency, or liver stagnation with kidney deficiency, heat clearing, spleen strengthening, or kidney tonifying herbs are added accordingly. In addition, three paired herb combinations are commonly used for symptom specific treatment, Danggui (Angelica sinensis) with Chuanxiong (Ligusticum chuanxiong), Zelan (Lycopus lucidus) with Yimucao (Leonurus japonicus) , and Jiegeng (Platycodon grandiflorus) with Zisu (Perilla frutescens).
8.Mechanism of action of immune molecules and related immune cells in liver failure
Qi LUO ; Biyu ZENG ; Rong ZHANG ; Guojuan MA ; Lei QING ; Liangjiang HUANG ; Lei FU ; Chun YAO
Journal of Clinical Hepatology 2025;41(6):1213-1219
Liver failure (LF) is a severe clinical syndrome characterized by severe impairment or decompensation of liver function. At present, the key role of immune molecules in the pathogenesis of LF has been well established. These molecules not only directly participate in the pathological process of LF, but also influence the course of LF by modulating the behavior of immune cells. In addition, immune molecules can be used as potential biomarkers for evaluating the prognosis of LF. This article summarizes the role of immune molecules in LF and explores the therapeutic strategies based on these immune molecules, in order to provide new directions for the diagnosis and treatment of LF.
9.Design, synthesis and anticancer activity of superoxide anion-releasing beta-galactoside prodrugs
Jiaxuan LIU ; Xueyan YAO ; Yunying TAN ; Jing HU ; Junjie FU ; Jian YIN
Journal of China Pharmaceutical University 2025;56(3):295-304
Four novel β-galactoside prodrugs were designed and synthesized from anthraquinones HAQ-OH and AQ-OH in an attempt to use the prodrugs to selectively release superoxide anion (O2−) in cancer cells and to achieve selected anticancer activity by utilizing the Warburg effect and the elevated level of β-galactosidase in certain cancer cells. Cellular assays showed that the prodrugs Gal-HAQ and Gal-AQ selectively inhibited the proliferation and induced apoptosis of ovarian cancer OVCAR-3 cells overexpressing β-galactosidase. Using O2− fluorescent probe, it was found that in OVCAR-3 cells Gal-HAQ and Gal-AQ could time-dependently release O2−, which was essential for their anticancer activity. Furthermore, it was found that Gal-HAQ and Gal-AQ were effective senolytics toward senescent cells overexpressing β-galactosidase without affecting the viability of corresponding non-senescent cells, further confirming the β-galactosidase-dependent cytotoxicity of the prodrugs. In conclusion, Gal-HAQ and Gal-AQ, which release O2− in response to β-galactosidase, are expected to serve as candidate prodrugs targeting cancer cells.
10.Advantages of a modified tumor volume and contact surface area calculation formula for the correlation and prediction of perioperative indicators in partial nephrectomy
Zihao LI ; Chong YAN ; Yao DONG ; Geng TIAN ; Yifei MA ; Hongliang LI ; Tie CHONG ; Delai FU
Journal of Modern Urology 2025;30(6):481-488
Objective: To develop a modified calculation formula for renal tumor volume and tumor contact surface area (CSA) based on the modeling results of 3D Slicer software, and to create a webpage of the calculation formula for use. Methods: The general information and tumor anatomical data of 98 patients who underwent partial nephrectomy during Jan.2021 and Jul.2023 in the Second Affiliated Hospital of Xi'an Jiaotong University were retrospectively analyzed.The imaging data were input into 3D Slicer software in the form of Dicom files for tumor and ipsilateral kidney modeling to obtain tumor anatomical data.The relationship between tumor anatomical parameters and tumor volume and CSA was analyzed using multifactorial linear regression.The initial modified formulas (V2, C2) and the optimized modified formulas (V3, C3) for tumor volume over CSA were established, respectively, after insignificant variables were eliminated.The mean square error (MSE) and Akaike information criterion (AIC) of the modified and traditional formulas (V1, C1) were compared, and the formula with the smallest MSE and AIC was selected as the optimal tumor volume and CSA calculation formula.The median tumor volume and CSA obtained from 3D modeling were used as the cutoff values.The optimal formula and conventional formula were applied to calculate tumor volume and CSA for all patients, and risk stratification was performed for all patients based on these cutoff values, and the perioperative indicators of patients in the upper and lower groups were compared.Finally, an online calculation tool was developed based on HTML. Results: Based on multifactorial linear regression analysis, we obtained the modified tumor volume calculation formula: V=0.382abc+2.488a+2.372b-4.146c+1.948(V2), V=0.469abc-4.586c+13.816(V3); the modified tumor CSA calculation formula CSA=2.469a
-2.262L
-19.23a+6.206b+1.212c+18.017L+1.616h-3.97h
-2.185h/h
-0.388(C2), CSA=2.376a
-2.144L
-20.157a+5.024b+1.128c+17.578L+2.525h-2.634(C3).Both of the modified volume formula (MSE=151.298 vs. 127.807 vs. 104.106) and modified CSA formula (MSE=309.878 vs.23.556 vs.30.388) had smaller errors compared to the conventional formula.The modified volume calculation formula showed that bleeding was more and thermal ischemia time was longer in patients with larger tumor volumes than in patients with smaller tumor volumes (P<0.05); and the modified CSA calculation formula showed that bleeding was more, surgery and thermal ischemia time were longer in patients with high CSA than in patients with low CSA (P<0.05).Finally, V3 and C3 are selected as the best calculation formula, and a web page (https://lizihao-bot.github.io/RCC-Calculate/) was established for easy use. Conclusion: This study combined data from a medical information technology platform with numerical modeling methods to provide a faster and more accurate method to calculate the renal tumor volume and CSA.Meanwhile, a webpage version of the tool was developed to enhance its practicability.

Result Analysis
Print
Save
E-mail