1.Epidemiological trends analysis of syphilis among students in Yunnan Province from 2005 to 2023
TAN Min, CHANG Litao, ZHANG Wanyue, HUANG Dafeng, LIU Chunyan, ZHANG Lifang, YANG Yanling
Chinese Journal of School Health 2025;46(5):737-740
Objective:
To analyze epidemiological trends and changing characteristics of syphilis among students in Yunnan Province from 2005 to 2023, so as to provide evidence for the comprehensive prevention and control of syphilis in schools.
Methods:
The case data of syphilis among students in Yunnan Province from 2005 to 2023 were obtained from the China Information System for Disease Control and Prevention. The Joinpoint regression model was used to conduct a time trend analysis of the reported incidence rate of syphilis.
Results:
From 2005 to 2023, a cumulative total of 3 191 cases of syphilis were reported in schools in Yunnan Province(1 248 male cases and 1 943 female cases). The reported incidence rate rose continuously from 0.17/100 000 in 2005 to 8.26/100 000 in 2023, with an average annual percent change (AAPC) of 24.89%( Z =13.18, P <0.01). The reported incidence rate was higher in female students than in male students ( χ 2=229.48, P <0.05). The incidence rates in the primary school, junior high school, senior high school and higher education were 0.21/100 000, 2.42/100 000, 4.45/100 000 and 6.29/100 000 respectively, and the difference was statistically significant (χ 2=3 432.84, P <0.05). The average annual growth rate was the highest in the junior high school stage(AAPC= 30.68% , Z =7.57, P <0.05),followed by the senior high school stage (AAPC=24.28%, Z = 5.70 , P <0.05).The reported incidence rate of primary and secondary syphilis increased from 0.12/100 000 in 2005 to 2.06/ 100 000 in 2023, with an AAPC of 16.86% ( Z = 4.57, P <0.05).
Conclusions
The overall reported incidence rate of syphilis among students in schools in Yunnan Province shows a sustained upward trend, with the most rapid annual increase observed in junior high schools. Schools should prioritize syphilis education and expand awareness campaigns to curb transmission.
2.Mechanism of Modified Erxian Decoction Regulating Perimenopausal Syndrome via SIRT1/Kisspeptin/GnRH Signaling Pathway
Ruiyu HUANG ; Fang LEI ; Wuchaonan LIU ; Jingjing YANG ; Qianru ZENG ; Shengping LUO ; Yanling CHEN ; Mengge ZHANG ; Fanshun SHEN ; Yihui DENG ; Dingxiang LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):51-62
ObjectiveTo explore the regulation of hypothalamic-pituitary-gonadal (HPG) axis by modified Erxian decoction in rats with perimenopausal syndrome (PMS) and to further analyze the expression of proteins related to the silent information regulator 1 (SIRT1)/hypothalamic kisspeptin (Kisspeptin)/gonadotropin-releasing hormone (GnRH) signaling pathway in the arcuate nucleus region (ARC) of the hypothalamus, so as to reveal the potential target of action and molecular biological mechanism of modified Erxian decoction for the treatment of perimenopausal syndrome. MethodsAn animal model was established via the incomplete castration method, with successful modeling confirmed by the exfoliated cervical cell smear method. The 48 rats were divided into six groups based on the randomization principle after successful modeling, including a sham operation group, a model group, an estradiol valerate group (0.09 mg∙kg-1∙d-1), high-, medium-, and low-dose modified Erxian decoction groups (7.614, 3.807,1.903 5 g∙kg-1∙d-1), with 8 rats in each group. The estradiol valerate group and the high-, medium- and low-dose modified Erxian decoction groups were continuously administered by gavage for 28 days, and the indicators were detected 24 hours after the last administration. Body weights and uterine indices were measured. The pathological changes of the uterus were observed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and gonadotropin-releasing hormone (GnRH). Real-time quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to determine the expression levels of SIRT1, Kisspeptin, kisspeptin receptor (GPR54), and GnRH in the ARC region of the hypothalamus and gonadotropin-releasing hormone receptor (GnRH-R) in pituitary. ResultsCompared with the sham operation group, rats in the model group had a significantly increased body weight (P0.01), reduced wet weight and index of uterus (P0.01), endometrial thinning or atrophy, glandular atrophy, and a decreasing number of glands. Additionally, serum levels of E2 and the expression of SIRT1 in the ARC region of the hypothalamus significantly decreased (P0.01). Serum levels of FSH, LH, and GnRH, the expression of Kisspeptin, GPR54, and GnRH in the ARC region of the hypothalamus, and GnRH-R in pituitary significantly increased (P0.01). Compared with the model group, the estradiol valerate group and the high-, medium-dose modified Erxian decoction groups had significantly reduced body weight, serum levels of FSH, LH, and GnRH, and expression of Kisspeptin, GPR54, and GnRH in the ARC region of the hypothalamus and GnRH-R in pituitary (P0.05, P0.01) and significantly increased wet weight and index of uterus, serum level of E2, and expression of SIRT1 in the ARC region of the hypothalamus (P0.05, P0.01). In addition, they showed thickened endometrium, increased number of endometrial glands, and improved glandular atrophy. ConclusionModified Erxian decoction regulates the function of the HPG axis through multi-targets, and its mechanism of action may be related to the up-regulation of the expression of SIRT1 in the ARC region of the hypothalamus, the inhibition of the over-activation of the Kisspeptin/GnRH signaling pathway, the regulation of the expression of GnRH-R in the pituitary, the restoration of secretion balance of gonadotropins, and the elevation of the estrogen level. This study provides an experimental basis for the interpretation of the scientific connotation of modified Erxian decoction in the treatment of perimenopausal syndrome and a theoretical reference for the development of a novel therapeutic strategy based on the SIRT1/Kisspeptin/GnRH pathway.
3.Current status and reflections on research of intelligent acupuncture-moxibustion medical equipment.
Ling CHENG ; Muqiu TIAN ; Yanling PING ; Shuqing LIU ; Yunfeng WANG ; Jun ZHANG ; Qiaofeng WU
Chinese Acupuncture & Moxibustion 2025;45(10):1396-1404
Intelligent acupuncture-moxibustion medical equipment is an important force in promoting the inheritance, innovation, and modernization of acupuncture-moxibustion. This paper reviews the development status of intelligent acupuncture-moxibustion medical equipment and related new technologies, as well as the challenges faced. It is found that, with the advancement of technologies such as big data and artificial intelligence, acupuncture-moxibustion medical equipment has shown characteristics of greater precision, miniaturization, intelligence, and portability. However, deficiencies remain in areas such as standardization and regulation, including relatively low rates of effective transformation and a lack of innovation in research outcomes. Therefore, there is an urgent need to formulate corresponding strategies: improving the development of relevant standards for intelligent acupuncture-moxibustion medical equipment, encouraging the integration of medicine and engineering, cultivating interdisciplinary talents, and strengthening the protection of invention patents. It is necessary to establish a demand-oriented pathway connecting "equipment development, equipment evaluation, product formation" through multiple stages such as talent training and research project initiation, thereby promoting the modernization and standardization of intelligent acupuncture-moxibustion medical equipment and supporting the revitalization of traditional medicine.
Moxibustion/instrumentation*
;
Humans
;
Acupuncture Therapy/trends*
;
Artificial Intelligence
4.Equivalence of SYN008 versus omalizumab in patients with refractory chronic spontaneous urticaria: A multicenter, randomized, double-blind, parallel-group, active-controlled phase III study.
Jingyi LI ; Yunsheng LIANG ; Wenli FENG ; Liehua DENG ; Hong FANG ; Chao JI ; Youkun LIN ; Furen ZHANG ; Rushan XIA ; Chunlei ZHANG ; Shuping GUO ; Mao LIN ; Yanling LI ; Shoumin ZHANG ; Xiaojing KANG ; Liuqing CHEN ; Zhiqiang SONG ; Xu YAO ; Chengxin LI ; Xiuping HAN ; Guoxiang GUO ; Qing GUO ; Xinsuo DUAN ; Jie LI ; Juan SU ; Shanshan LI ; Qing SUN ; Juan TAO ; Yangfeng DING ; Danqi DENG ; Fuqiu LI ; Haiyun SUO ; Shunquan WU ; Jingbo QIU ; Hongmei LUO ; Linfeng LI ; Ruoyu LI
Chinese Medical Journal 2025;138(16):2040-2042
5.Dimeric natural product panepocyclinol A inhibits STAT3 via di-covalent modification.
Li LI ; Yuezhou WANG ; Yiqiu WANG ; Xiaoyang LI ; Qihong DENG ; Fei GAO ; Wenhua LIAN ; Yunzhan LI ; Fu GUI ; Yanling WEI ; Su-Jie ZHU ; Cai-Hong YUN ; Lei ZHANG ; Zhiyu HU ; Qingyan XU ; Xiaobing WU ; Lanfen CHEN ; Dawang ZHOU ; Jianming ZHANG ; Fei XIA ; Xianming DENG
Acta Pharmaceutica Sinica B 2025;15(1):409-423
Homo- or heterodimeric compounds that affect dimeric protein function through interaction between monomeric moieties and protein subunits can serve as valuable sources of potent and selective drug candidates. Here, we screened an in-house dimeric natural product collection, and panepocyclinol A (PecA) emerged as a selective and potent STAT3 inhibitor with profound anti-tumor efficacy. Through cross-linking C712/C718 residues in separate STAT3 monomers with two distinct Michael receptors, PecA inhibits STAT3 DNA binding affinity and transcription activity. Molecular dynamics simulation reveals the key conformation changes of STAT3 dimers upon the di-covalent binding with PecA that abolishes its DNA interactions. Furthermore, PecA exhibits high efficacy against anaplastic large T cell lymphoma in vitro and in vivo, especially those with constitutively activated STAT3 or STAT3Y640F. In summary, our study describes a distinct and effective di-covalent modification for the dimeric compound PecA to disrupt STAT3 function.
6.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
7.A small-molecule anti-cancer drug for long-acting lysosomal damage.
Shulin ZHAO ; Qingjie BAI ; Guimin XUE ; Juan WANG ; Luyao HU ; Xueqian WANG ; Yan LI ; Shuai LU ; Yangang SUN ; Zhiqiang ZHANG ; Yanling MU ; Yanle ZHI ; Qixin CHEN
Acta Pharmaceutica Sinica B 2025;15(11):5867-5879
Lysosomes represent a promising target for cancer therapy and reducing drug resistance. However, the short treatment time and low efficiency of lysosomal targeting have limited the application in lysosome-targeting anticancer drugs. In this study, we proposed an adhesive-bandage approach and synthesized a new lysosomal targeting drug, namely long-term lysosome-targeting anticancer drug (LLAD). It contains a SLC38A9-targeting covalently bound moiety and an alkaline component both to prolong the inhibition of SLC38A9 in lysosomes and alkalinize lysosomes. Upon short term and low-dose treatment of HeLa cells, at passage 0, with LLAD, it rapidly alkalinized lysosomes and also can be detected in lysosomes even at passage 15. LLAD induced apoptosis in HeLa cells through long-term lysosomal damage, and showed better long-term anticancer effect than cisplatin in vivo. Overall, our study paves the way for developing long-term lysosomal targeting drugs to treat cancer and overcome the drug resistance of cancer cells, and also provides a candidate drug, LLAD, for treating cancer.
8.Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification: Insights from Brain Network Analysis and Gene Expression.
Jingjing GAO ; Heping TANG ; Zhengning WANG ; Yanling LI ; Na LUO ; Ming SONG ; Sangma XIE ; Weiyang SHI ; Hao YAN ; Lin LU ; Jun YAN ; Peng LI ; Yuqing SONG ; Jun CHEN ; Yunchun CHEN ; Huaning WANG ; Wenming LIU ; Zhigang LI ; Hua GUO ; Ping WAN ; Luxian LV ; Yongfeng YANG ; Huiling WANG ; Hongxing ZHANG ; Huawang WU ; Yuping NING ; Dai ZHANG ; Tianzi JIANG
Neuroscience Bulletin 2025;41(6):933-950
Schizophrenia (SZ) stands as a severe psychiatric disorder. This study applied diffusion tensor imaging (DTI) data in conjunction with graph neural networks to distinguish SZ patients from normal controls (NCs) and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features, achieving an accuracy of 73.79% in distinguishing SZ patients from NCs. Beyond mere discrimination, our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis. These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers, providing novel insights into the neuropathological basis of SZ. In summary, our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.
Humans
;
Schizophrenia/pathology*
;
Diffusion Tensor Imaging/methods*
;
Male
;
Female
;
Adult
;
Brain/metabolism*
;
Young Adult
;
Middle Aged
;
White Matter/pathology*
;
Gene Expression
;
Nerve Net/diagnostic imaging*
;
Graph Neural Networks
9.Endosomal catabolism of phosphatidylinositol 4,5-bisphosphate is fundamental in building resilience against pathogens.
Chao YANG ; Longfeng YAO ; Dan CHEN ; Changling CHEN ; Wenbo LI ; Hua TONG ; Zihang CHENG ; Yanling YAN ; Long LIN ; Jing ZHANG ; Anbing SHI
Protein & Cell 2025;16(3):161-187
Endosomes are characterized by the presence of various phosphoinositides that are essential for defining the membrane properties. However, the interplay between endosomal phosphoinositides metabolism and innate immunity is yet to be fully understood. Here, our findings highlight the evolutionary continuity of RAB-10/Rab10's involvement in regulating innate immunity. Upon infection of Caenorhabditis elegans with Pseudomonas aeruginosa, an increase in RAB-10 activity was observed in the intestine. Conversely, when RAB-10 was absent, the intestinal diacylglycerols (DAGs) decreased, and the animal's response to the pathogen was impaired. Further research revealed that UNC-16/JIP3 acts as an RAB-10 effector, facilitating the recruitment of phospholipase EGL-8 to endosomes. This leads to a decrease in endosomal phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and an elevation of DAGs, as well as the activation of the PMK-1/p38 MAPK innate immune pathway. It is noteworthy that the dimerization of UNC-16 is a prerequisite for its interaction with RAB-10(GTP) and the recruitment of EGL-8. Moreover, we ascertained that the rise in RAB-10 activity, due to infection, was attributed to the augmented expression of LET-413/Erbin, and the nuclear receptor NHR-25/NR5A1/2 was determined to be indispensable for this increase. Hence, this study illuminates the significance of endosomal PI(4,5)P2 catabolism in boosting innate immunity and outlines an NHR-25-mediated mechanism for pathogen detection in intestinal epithelia.
Animals
;
Caenorhabditis elegans/genetics*
;
Endosomes/immunology*
;
Caenorhabditis elegans Proteins/immunology*
;
Phosphatidylinositol 4,5-Diphosphate/immunology*
;
Immunity, Innate
;
Pseudomonas aeruginosa/immunology*
;
rab GTP-Binding Proteins/genetics*
;
Diglycerides/metabolism*
10.Regulation of iron metabolism in ferroptosis: From mechanism research to clinical translation.
Xin ZHANG ; Yang XIANG ; Qingyan WANG ; Xinyue BAI ; Dinglun MENG ; Juan WU ; Keyao SUN ; Lei ZHANG ; Rongrong QIANG ; Wenhan LIU ; Xiang ZHANG ; Jingling QIANG ; Xiaolong LIU ; Yanling YANG
Journal of Pharmaceutical Analysis 2025;15(10):101304-101304
Iron is an essential trace element in the human body, crucial in maintaining normal physiological functions. Recent studies have identified iron ions as a significant factor in initiating the ferroptosis process, a novel mode of programmed cell death characterized by iron overload and lipid peroxide accumulation. The iron metabolism pathway is one of the primary mechanisms regulating ferroptosis, as it maintains iron homeostasis within the cell. Numerous studies have demonstrated that abnormalities in iron metabolism can trigger the Fenton reaction, exacerbating oxidative stress, and leading to cell membrane rupture, cellular dysfunction, and damage to tissue structures. Therefore, regulation of iron metabolism represents a key strategy for ameliorating ferroptosis and offers new insights for treating diseases associated with iron metabolism imbalances. This review first summarizes the mechanisms that regulate iron metabolic pathways in ferroptosis and discusses the connections between the pathogenesis of various diseases and iron metabolism. Next, we introduce natural and synthetic small molecule compounds, hormones, proteins, and new nanomaterials that can affect iron metabolism. Finally, we provide an overview of the challenges faced by iron regulators in clinical translation and a summary and outlook on iron metabolism in ferroptosis, aiming to pave the way for future exploration and optimization of iron metabolism regulation strategies.


Result Analysis
Print
Save
E-mail