1.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification: Insights from Brain Network Analysis and Gene Expression.
Jingjing GAO ; Heping TANG ; Zhengning WANG ; Yanling LI ; Na LUO ; Ming SONG ; Sangma XIE ; Weiyang SHI ; Hao YAN ; Lin LU ; Jun YAN ; Peng LI ; Yuqing SONG ; Jun CHEN ; Yunchun CHEN ; Huaning WANG ; Wenming LIU ; Zhigang LI ; Hua GUO ; Ping WAN ; Luxian LV ; Yongfeng YANG ; Huiling WANG ; Hongxing ZHANG ; Huawang WU ; Yuping NING ; Dai ZHANG ; Tianzi JIANG
Neuroscience Bulletin 2025;41(6):933-950
Schizophrenia (SZ) stands as a severe psychiatric disorder. This study applied diffusion tensor imaging (DTI) data in conjunction with graph neural networks to distinguish SZ patients from normal controls (NCs) and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features, achieving an accuracy of 73.79% in distinguishing SZ patients from NCs. Beyond mere discrimination, our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis. These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers, providing novel insights into the neuropathological basis of SZ. In summary, our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.
Humans
;
Schizophrenia/pathology*
;
Diffusion Tensor Imaging/methods*
;
Male
;
Female
;
Adult
;
Brain/metabolism*
;
Young Adult
;
Middle Aged
;
White Matter/pathology*
;
Gene Expression
;
Nerve Net/diagnostic imaging*
;
Graph Neural Networks
7.In vitro osteogenic performance study of graphene oxide-coated titanium surfaces modified with dopamine or silane.
Qinglin WU ; Yingzhen LAI ; Yanling HUANG ; Zeyu XIE ; Yanyin LIN
West China Journal of Stomatology 2025;43(3):336-345
OBJECTIVES:
This study aimed to compare the osteogenic performance differences of titanium surface coatings modified by dopamine or silanized graphene oxide, and to provide a more suitable modification scheme for titanium surface graphene oxide coatings.
METHODS:
Titanium was subjected to alkali-heat treatment and then modified with dopamine and silanization, respectively, followed by coating with graphene oxide. Control and experimental groups were designed as follows: pure titanium (Ti) group; titanium after alkali-heat treatment (Ti-NaOH) group; titanium after alkali-heat treatment and silanization modification (Ti-APTES) group; titanium after alkali-heat treatment and dopamine modification (Ti-DOPA) group; titanium with silanization-modified surface decorated with graphene oxide (Ti-APTES/GO) group; titanium with dopamine-modified surface decorated with graphene oxide (Ti-DOPA/GO) group. The physical and chemical properties of the material surfaces were analyzed using scanning electron microscopy (SEM), contact angle goniometer, X-ray photoelectron spectroscopy (XPS), and Raman spectrometer. The proliferation and adhesion morphology of mouse embryonic osteoblast precursor cells MC3T3-E1 on the material surfaces were observed by cell viability detection and immunofluorescence staining followed by laser confocal microscopy. The effects on the osteogenic differentiation of MC3T3-E1 cells were studied by alkaline phosphatase (ALP) staining, alizarin red staining and quantification, and real-time quantitative polymerase chain reaction.
RESULTS:
After modification with graphene oxide coating, a thin-film-like structure was observed on the surface under SEM. The hydrophilicity of all experimental groups was improved, among which the Ti-DOPA/GO group had the best hydrophilicity. XPS and Raman spectroscopy analysis showed that the modified materials exhibited typical D and G peaks, and XPS revealed the presence of a large number of oxygen-containing functional groups on the surface. CCK8 assay showed that all groups of materials had no cytotoxicity, and the proliferation level of the Ti-APTES/GO group was higher than that of the Ti-DOPA/GO group. Under the laser confocal microscope, the cells in the Ti-DOPA/GO and Ti-APTES/GO groups spread more fully. The Ti-DOPA/GO and Ti-APTES/GO groups had the deepest ALP staining, and the Ti-APTES/GO group had the most alizarin red-stained mineralized nodules and the highest quantitative result of alizarin red staining. In the Ti-DOPA/GO and Ti-APTES/GO groups, the expression of the early osteogenic-related gene RUNX2 reached a relatively high level, while in the expression of the late osteogenic-related genes OPN and OCN, the Ti-APTES/GO group performed better than the Ti-DOPA/GO group.
CONCLUSIONS
Ti-APTES/GO significantly outperformed Ti-DOPA/GO in promoting the adhesion, proliferation, and in vitro osteogenic differentiation of MC3T3-E1 cells.
Titanium/chemistry*
;
Graphite/chemistry*
;
Dopamine/chemistry*
;
Animals
;
Mice
;
Osteogenesis
;
Osteoblasts/cytology*
;
Surface Properties
;
Cell Proliferation
;
Silanes/chemistry*
;
Cell Adhesion
;
Coated Materials, Biocompatible/chemistry*
;
Cell Differentiation
;
Alkaline Phosphatase/metabolism*
;
Microscopy, Electron, Scanning
8.Research Progress on the Novel Mechanosensitive Ion Channel Piezo1 in Cardiac Fibrosis
Yanling LI ; Gang WANG ; Wenting YAN ; Yuan HUANG ; Ping XIE
Journal of Medical Biomechanics 2024;39(1):178-184
During the occurrence and development of various heart diseases,continuous deterioration of myocardial fibrosis leads to remodeling and dysfunction of the cardiac structure.As a newly discovered mechanically sensitive ion channel,Piezo1 has opened up a new field of research on cellular mechanical transduction.Piezo1 combines a fine force transducer with Ca2+ influx and participates in the regulation of cellular mechanical transduction,thereby regulating cellular biological functions.Recent studies have shown that the biomechanical changes induced by myocardial injury regulate the expression of Piezo1 in cardiomyocytes and cause an imbalance in calcium homeostasis,which plays an important role in the positive feedback loop of myocardial fibrosis.This review summarizes the theoretical basis and related studies of Piezo1 in regulating cardiac fibrosis and suggests that the Piezo1 channel may become a new target for the treatment of cardiac fibrosis,thereby providing a new research horizon for the prevention and treatment of cardiac fibrosis.
9.Screening and experimental validation of hub genes for myocardial isch-emia-reperfusion injury based on bioinformatics
Jianru WANG ; Xingyuan LI ; Shiyang XIE ; Yanling CHENG ; Hongxin GUO ; Mingjun ZHU ; Rui YU
Chinese Journal of Pathophysiology 2024;40(3):473-483
AIM:Using bioinformatics analysis methods to identify the hub genes involved in myocardial isch-emia-reperfusion injury(MIRI).METHODS:Firstly,the rat MIRI related dataset GSE122020,E-MEXP-2098,and E-GEOD-4105 were downloaded from the database.Secondly,differentially expressed genes(DEGs)were screened from each dataset using the linear models for microarray data(limma)package,and robust DEGs were filtered using the robust rank aggregation(RRA)method.In addition,the surrogate variable analysis(SVA)package was used to merge all datas-ets into one,and merged DEGs were screened using the limma package.The common DEGs were obtained by taking the intersection of the two channels of DEGs.Next,the protein-protein interaction(PPI)network of common DEGs was con-structed,and the hub genes were identified using the density-maximizing neighborhood component(DMNC)algorithm.The receiver operating characteristic curve(ROC)was plotted to evaluate the diagnostic performance of the hub gene.Then,the mRNA and protein expression levels of hub genes were detected in the rat MIRI model,and the literature re-view analysis was carried out on the involvement of hub genes in MIRI.Finally,the gene set enrichment analysis(GSEA)was performed on hub gene to further reveal the possible mechanism in mediating MIRI.RESULTS:A total of 143 robust DEGs and 48 merged DEGs were identified.After taking the intersection of the two,48 common DEGs were obtained.In the PPI network of common DEGs,5 hub genes were screened out,namely MYC proto-oncogene bHLH transcription fac-tor(MYC),prostaglandin-endoperoxide synthase 2(PTGS2),heme oxygenase 1(HMOX1),caspase-3(CASP3),and plasminogen activator urokinase receptor(PLAUR).The ROC results showed that the area under the curve values for all hub genes were greater than 0.8.MYC,PTGS2,CASP3,and PLAUR showed high mRNA and protein expression in rat MIRI,while there was no difference in mRNA and protein expression for HMOX1.The literature review revealed that among the 5 hub genes,only PLAUR has not been reported to be involved in MIRI.The GSEA results for PLAUR indicat-ed that its functional enrichment mainly focused on pathways such as NOD-like receptor signaling pathway,P53 signaling pathway,Toll-like receptor signaling pathway,apoptosis,and fatty acid metabolism.CONCLUSION:MYC,PTGS2,CASP3,HMOX1,and PLAUR are involved in the pathological process of MIRI.PLAUR is a potential hub gene that can mediate MIRI by regulating pathways such as NOD like receptor signaling,P53 signaling,Toll like receptor signaling,cell apoptosis,and fatty acid metabolism.The results can provide reference for further investigation into the molecular mechanisms and therapeutic targets of MIRI.
10.Ultrasound shear wave elastography of skin in diagnosis of lymphedema of lower extremity: a preliminary study
Jiaping LI ; Jia LUO ; Manying LI ; Jian QI ; Xiang ZHOU ; Qiushuang LI ; Shaozhen CHEN ; Xiaoyan XIE ; Yanling ZHENG
Chinese Journal of Microsurgery 2024;47(4):382-387
Objective:To explore a better measurement mode of shear wave elastography (SWE) in the skin of lymphedema limbs, and to test its diagnostic efficacy in lymphedema.Methods:Between 1st and 10th August, 2023, 22 healthy volunteers were recruited in the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ulrasound, the First Afiliaed Hospital of Sun Yat-Sen University to measure the Young's modulus (E-value) of limb skin by SWE using a gel pad (GP group) and the thick-layer coupling gel (CG group) respectively. Then between 15th August and 28th September, 2023, 11 patients with 13 lower limb lymphedema, who were treated in the Department of Microsurgery, Orhopaedic Trauma and Hand Surgery, the First Affiliaed Hospital of Sun Yat-Sen University, were consecutively enrolled to find out the E-value of skin in oedematous limbs. The receiver operating characteristic curve (ROC) was constructed and the sensitivity, specificity, positive predictive value, negative predictive value and accuracy were calculated to evaluate the diagnostic efficiency. SPSS 26.0, R studio and GraphPad Prism 8 software were used for statistical analysis. Paired sample non-parametric test (Wilcoxon signed rank test) was used to compare the difference in E-value between the 2 groups. P<0.01 was considered statistically significant. Spearman correlation test was used to analyse the correlation of E-value values between the GP group and CG group. Results:Overall, it was found from the healthy volunteers that E-value of skin in distal limbs were higher than that in proximal limbs, especially in lower extremities. E-value of all scanned location in GP group were found higher than those of CG group with statistically significant difference ( P<0.01), and the values of interclass correlation coefficient (ICC) showed a good repeatability. The 11 patients with lymphedema in 13 lower extremities were examined with the thick-layer coupling gel. The skin E-value in calf of patients with lymphedema were significantly higher than that of the healthy volunteers ( P<0.01), except the skin of thighs ( P>0.01). A lymphedema was diagnosed while either a skin E-value was 27.6 kPa calculated by Youden index or with the thickness of skin was 2.3 mm. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy in the diagnosis of a lymphedema were found at 92.3%, 100%, 100%, 95.7% and 97.1%, respectively. The area under curve (AUC) of ROC was 0.962. The correlation coefficients (R) of E-value in arm, forearm, thigh and lower leg in the GP group and CP group were 0.665, 0.882, 0.850 and 0.815, respectively, which were all significantly correlated. Conclusion:Application of thick layer coupler in ultrasound skin SWE is highly feasible, and the combination of ultrasound skin SWE and skin thickness has higher diagnostic efficiency in the diagnosis of lower extremities lymphedema. It allows more accurate ultrasonic image technical support for early monitoring and diagnosis of lymphedema, microsurgical treatment and a quantitatively perioperative evaluation.

Result Analysis
Print
Save
E-mail