1.Treating premature ejaculation combined with anxiety and depression based on the "four-dimensional integration" of the "holism of body and spirit" theory
Yi WEI ; Zhiming HONG ; Junfeng QIU ; Zilong CHEN ; Hao KUANG ; Yangling ZENG ; Quan WANG ; Wenbin ZHOU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):418-423
Premature ejaculation refers to a sexual dysfunction in which men experience a short intravaginal ejaculation latency and a lack of control over ejaculation during sexual activity. The onset of this condition is often accompanied by anxiety and depression, which can seriously affect the quality of the patient′s sexual life and the relationship between partners. Based on the "integration of body and spirit" theory in traditional Chinese medicine, our team believes that this condition is a comorbidity of physical and spiritual factors. We propose that the core pathogenesis of this disease lies in the "loss of form and essence, impairment of spirit, and depression of the mind, "while the primary treatment principle involves "nourishing form and regulating spirit." As a result, a new diagnosis and treatment approach of "four-dimensional integration" is summarized in this study. The disease is treated through the four dimensions of shape, body, spirit, and emotion. Traditional Chinese medicine is used to adjust the shape in cases where the physical form is damaged. For individuals with depression of heart and liver qi, the treatment focuses on soothing the heart and smoothing liver qi, and the modified Wangyou Powder and Xuanzhi Decoction is used. In cases where the heart and kidney function are compromised, the treatment involves nourishing both the heart and kidney while restoring interaction between the heart and the kidney, and modified Jihuo Yansi Elixir is used. To reduce the sensitivity of the glans penis, the patient′s body is washed with a traditional Chinese medicine formula, and a delicate fumigation formula is decocted for external washing. For those who are not in tune with their god, psychological counseling can be used to regulate their spirit and advocate "self-partner" and psychotherapy. If there are issues with intimacy, partners should focus on cooperating during foreplay, sexual intercourse, and post-coital interactions. Overall, the treatment aims to harmonize the body and spirit, addressing both physical and psychological factors through a comprehensive, multi-dimensional approach. This method provides new perspectives and ideas for the clinical diagnosis and treatment of this condition.
2.Mechanism of Buzhong Yiqitang in Repairing Brain Developmental Abnormalities in Offspring of Pregnant Rats with Subclinical Hypothyroidism
Yan MA ; Xiaojiao LYU ; Yangling HUANG ; Xiande MA ; Tianshu GAO ; Peiwei CONG ; Wei CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):24-34
ObjectiveTo evaluate the pharmacological effect of Buzhong Yiqitang on brain development in offspring of rats with subclinical hypothyroidism (SCH) during pregnancy and explore its potential mechanism. MethodsForty-eight SPF female SD rats were divided into sham operation group (n=8) and model group (n=40). The rat model of subclinical hypothyroidism (SCH) was constructed by total thyroidectomy combined with postoperative subcutaneous injection of levothyroxine (L-T4). The modeled rats were randomly allocated into model, low-, medium-, and high-dose (5.58, 11.16, 22.32 g∙kg-1, respectively) Buzhong Yiqitang, and euthyrox (4.5×10-6 g∙kg-1) groups, with 8 rats in each group. These rats were co-housed with normal male rats for mating. Drug administration started 2 weeks before pregnancy and continued until delivery. Hematoxylin-eosin staining and Golgi-cox staining were used to observe pathological changes in the hippocampal tissue of offspring rats. Western blot was employed to detect the effects of Buzhong Yiqitang on the protein levels of cytochrome C oxidase subunitⅠ (COX)Ⅰ and COXⅣ in the hippocampal tissue of offspring rats. A colorimetric method was used to measure the mitochondrial adenosine triphosphate (ATP) content in the hippocampal tissue of offspring rats. For in vitro experiments, a hydrogen peroxide (H2O2)-induced oxidative damage model was established with rat pheochromocytoma cells (PC12). Interventions included the DNA methyltransferase inhibitor (SGI-1027), Buzhong Yiqitang-medicated serum, and euthyrox-medicated serum. The cell counting kit-8 (CCK-8) assay was used to examine the effect of Buzhong Yiqitang on cell proliferation. Immunofluorescence staining was performed to evaluate the effect on tubulin beta 3 class Ⅲ (TUBB3) in PC12 cells. Western blot was employed to assess the effects on the protein levels of DNA methyltransferases (TETs and DNMTs) in PC12 cells. The fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA), luciferase assay, and JC-1 staining were employed to assess the effects of Buzhong Yiqitang on the levels of reactive oxygen species (ROS) and ATP and the mitochondrial membrane potential in PC12 cells. ResultsCompared with the sham group, the model group showed a reduction in the number of hippocampal neurons, incomplete pyramidal cell bodies, loose arrangement, shortened average dendrite length, decreased dendritic complexity and dendritic spine density, and reduced expression levels of COXⅠ and COXⅣ and content of ATP in the brain tissue (P<0.05, P<0.01). Compared with the model group, after administration of Buzhong Yiqitang and euthyrox, hippocampal neurons exhibited regular arrangement, complete morphology, extended dendrite, increased dendritic complexity and dendritic spine density, and restored expression levels of COXⅠ and COXⅣ and content of ATP (P<0.05, P<0.01), with the medium-dose Buzhong Yiqitang group showing the best therapeutic effect. In the PC12 cell model of oxidative damage, Buzhong Yiqitang increased the cell viability (P<0.01), enhanced neuronal differentiation, down-regulated the expression levels of DNMTs (P<0.05), up-regulated the expression levels of TETs (P<0.05), decreased the ROS content (P<0.01), and restored the ATP content and mitochondrial membrane potential (P<0.01). ConclusionBuzhong Yiqitang protects brain development in offspring of pregnant rats with SCH. It mainly acts on the oxidative stress and mitochondrial dysfunction resulted from abnormal mtDNA methylation, with DNMTs and TETs as the key proteins for its effects.
3.Discussion on the medication law of Wang Xugao for the treatment of phlegm-drinking disease based on data mining
Baixiao CHEN ; Ying ZHONG ; Canmei LI ; Yangling HUANG ; Shifeng LIN ; Yaping ZHANG
International Journal of Traditional Chinese Medicine 2024;46(1):97-102
Objective:To explore the prescription ideas of treating phlegm-drinking disease in Wang Xugao Lin Zheng Yi An; To analyze the medication law of Wang Xugao's clinical treatment of phlegm-drinking disease. Methods:The database was established based on the medical records of the chapter of phlegm, fluid retention and liver wind and phlegm fire contained in Wang Xugao Lin Zheng Yi An. Excel 2017 software was used to analyze the frequency, taste and meridian tropism of all Chinese materia medica. For Chinese materia medica with frequency≥10, IBM SPSS Modeler 18 software was used to analyze the association rules based on Apriori algorithm, and SPSS 25.0 software was used for cluster analysis based on Ochiai algorithm. Results:A total of 80 medical cases were included, involving 114 prescriptions, including 191 flavors of Chinese materia medica . High-frequency Chinese materia medica mainly included Poria, Pinelliae Rhizoma, Citri Reticulatae Pericarpium, Atractylodis Macrocephalae Rhizoma and Armeniacae Semen Amarum, etc. The main properties in Wang Xugao's medication for the treatment of phlegm-drink disease were warm, followed by cold and mild. The main tastes were sweet, bitter and pungent. Drugs mainly belong to the lung meridian and spleen, stomach, liver, kidney meridians; several core medicinal pairs were obtained, such as Farfarae Flos - Armeniacae Semen Amarum, Pinelliae Rhizoma - Zingiberis Rhizoma, Uncariae Ramulus cum Uncis - Haliotidis Concha, etc. Eight groups of core drug combinations could be sorted out by clustering analysis.Conclusions:In the treatment of phlegm-drinking disease, Wang Xugao paid attention to the simultaneous treatment of multiple viscera to coordinate the balance between the viscera, emphasized the complex etiology of phlegm-drinking disease combined with cold, fire and dampness, attached importance to the treatment of healthy qi to retreat pathogens, the regulation of three-energizer to regulate qi flow. The treatment of three-energizer, promoting yang and reducing phlegm, clearing liver and dispelling wind are the main methods. Medication mainly chooses properties of sweet and warm, with bitter and pungent.
4.Mechanism of action and potential value of the IRE1α/TRAF2/JNK pathway in the progression of acute liver failure
Haimei GUAN ; Kan ZHANG ; Weiyu CHEN ; Guobao LI ; Yangling ZENG ; Riyun ZHANG ; Tianwen WANG ; Baohua XIE ; Dewen MAO
Journal of Clinical Hepatology 2024;40(6):1281-1288
Acute liver failure(ALF)is one of the most critical liver diseases in clinical practice and seriously affects the life and health of Chinese people.Due to its high morbidity and mortality rates,unclear pathogenesis,and limited treatment methods,ALF has become a major problem that needs to be solved urgently in the field of liver diseases.In recent years,more and more studies have shown that endoplasmic reticulum stress is a key biological process in the progression of ALF,and the IRE1α/TRAF2/JNK pathway,as a part of endoplasmic reticulum stress signaling,plays a role in amplifying inflammatory response,promoting hepatocyte apoptosis,and inhibiting liver regeneration ability during the progression of diseases.As a traditional treasure of China,traditional Chinese medicine has become a research hotspot in search for effective prevention and treatment drugs for ALF from monomers of Chinese herbs.This article elaborates on the mechanism of action of the IRE1α/TRAF2/JNK pathway in the progression of ALF and summarizes the potential value of several monomers of Chinese herbs in regulating this pathway,such as salidroside,Fructus Broussonetiae,Fructus Psoraleae+Schisandra chinensis,baicalein,genipin,kaempferol,resveratrol,sea buckthorn polysaccharide extract,and luteol,in order to provide a reference for further research and clinical practice of ALF.
5.Prokaryotic expression and purification of the transcription factor TaNAC14 in wheat (Triticum aestivum).
Zhijun CHEN ; Lijian ZHANG ; Qing CHI ; Baowei WU ; Lanjiya AO ; Huixian ZHAO
Chinese Journal of Biotechnology 2024;40(11):4171-4182
The transcription factors (TFs) in the NAC family are involved in regulating multiple biological processes, playing an important role in plant growth, development, and stress adaptation. Our previous studies have demonstrated that TaNAC14, a member of the NAC family in wheat (Triticum aestivum L.), positively regulates root growth and development and enhances the drought tolerance of wheat seedlings. In this study, we analyzed the physicochemical properties and structure and verified the subcellular localization and transcriptional activation activity of TaNAC14. The prokaryotic expression vector pET21a-HMT-TaNAC14 was constructed and transformed into Escherichia coli BL21 CodonPlus (DE3)-RIPL. The conditions for inducing the expression of the recombinant protein HMT-TaNAC14 were optimized. The solubility of the recombinant protein was analyzed, and the protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The results indicated that TaNAC14 had a conserved domain of the NAM family. It was located in the nucleus and had transcriptional activation activity. The optimal conditions for expression of the recombinant protein in E. coli were induction with 0.2mmol/L IPTG for 4 h. The recombinant protein mainly existed in the soluble form, and the target protein was obtained after purification. This study lays a foundation for the identification of target genes regulated by TaNAC14.
Triticum/metabolism*
;
Escherichia coli/metabolism*
;
Plant Proteins/metabolism*
;
Transcription Factors/metabolism*
;
Recombinant Proteins/metabolism*
;
Genetic Vectors/genetics*
6.Phenolic derivatives from root bark of Schisandra sphenanthera.
Yuan-Yuan LIU ; Rui LI ; Hao-Nan XU ; Chen-Wang LIU ; Yu-Ze LI ; Chong DENG ; Xiao-Mei SONG ; Wei WANG ; Dong-Dong ZHANG
China Journal of Chinese Materia Medica 2023;48(12):3287-3293
This paper aimed to study the chemical constituents from the root bark of Schisandra sphenanthera. Silica, Sephadex LH-20 and RP-HPLC were used to separate and purify the 80% ethanol extract of S. sphenanthera. Eleven compounds were identified by ~1H-NMR, ~(13)C-NMR, ESI-MS, etc., which were 2-[2-hydroxy-5-(3-hydroxypropyl)-3-methoxyphenyl]-propane-1,3-diol(1), threo-7-methoxyguaiacylglycerol(2),4-O-(2-hydroxy-1-hydroxymethylethyl)-dihydroconiferylalcohol(3), morusin(4), sanggenol A(5), sanggenon I(6), sanggenon N(7), leachianone G(8),(+)-catechin(9), epicatechin(10), and 7,4'-dimethoxyisoflavone(11). Among them, compound 1 was a new compound, and compounds 2-9 were isolated from S. sphenanthera for the first time. Compounds 2-11 were subjected to cell viability assay, and the results revealed that compounds 4 and 5 had potential cytotoxicity, and compound 4 also had potential antiviral activity.
Schisandra
;
Plant Bark
;
Antiviral Agents
;
Biological Assay
;
Catechin
;
Phenols
7.BLOC1S1 promotes proliferation of goat spermatogonial stem cells.
Shicheng WAN ; Mengfei ZHANG ; Wenbo CHEN ; Miao HAN ; Donghui YANG ; Congliang WANG ; Wenping WU ; Yuqi WANG ; Na LI ; Haijing ZHU ; Arisha AHMED HAMED ; Jinlian HUA
Chinese Journal of Biotechnology 2023;39(12):4901-4914
With the rapid development of gene editing technology, the study of spermatogonial stem cells (SSCs) holds great significance in understanding spermatogenesis and its regulatory mechanism, developing transgenic animals, gene therapy, infertility treatment and protecting rare species. Biogenesis of lysosome-related organelles complex 1 subunit 1 (BLOC1S1) is believed to have anti-brucella potential. Exploring the impack of BLOC1S1 on goat SSCs not only helps investigate the ability of BLOC1S1 to promote SSCs proliferation, but also provides a cytological basis for disease-resistant breeding research. In this study, a BLOC1S1 overexpression vector was constructed by homologous recombination. The BLOC1S1 overexpression cell line of goat spermatogonial stem cells was successfully constructed by lentivirus packaging, transfection and puromycin screening. The overexpression efficiency of BLOC1S1 was found to be 18 times higher using real time quantitative PCR (RT-qPCR). Furthermore, the results from cell growth curve analysis, flow cytometry for cell cycle detection, and 5-ethynyl-2'-deoxyuridine (EdU) staining showed that BLOC1S1 significantly increased the proliferation activity of goat SSCs. The results of RT-qPCR, immunofluorescence staining and Western blotting analyses revealed up-regulation of proliferation-related genes (PCNA, CDK2, CCND1), and EIF2S3Y, a key gene regulating the proliferation of spermatogonial stem cells. These findings strongly suggest that the proliferative ability of goat SSCs can be enhanced through the EIF2S3Y/ERK pathway. In summary, this study successfully created a goat spermatogonial stem cell BLOC1S1 overexpression cell line, which exhibited improved proliferation ability. This research laid the groundwork for exploring the regulatory role of BLOC1S1 in goat spermatogonia and provided a cell platform for further study into the biological function of BLOC1S1. These findings also establish a foundation for breeding BLOC1S1 overexpressing goats.
Animals
;
Male
;
Goats
;
Stem Cells
;
Spermatogonia/metabolism*
;
Cell Proliferation
;
Flow Cytometry
;
Testis/metabolism*
8.Single base editing system mediates site-directed mutagenesis of genes GDF9 and FecB in Ouler Tibetan sheep.
Yifan ZHAO ; Yingbing ZHANG ; Ruiluan YU ; Ying WU ; Yongzhong CHEN ; Ruolin ZHAO ; Chengtu ZHANG ; Jianmin SU
Chinese Journal of Biotechnology 2023;39(1):204-216
In this study, a single base editing system was used to edit the FecB and GDF9 gene to achieve a targeted site mutation from A to G and from C to T in Ouler Tibetan sheep fibroblasts, and to test its editing efficiency. Firstly, we designed and synthesized sgRNA sequences targeting FecB and GDF9 genes of Ouler Tibetan sheep, followed by connection to epi-ABEmax and epi-BE4max plasmids to construct vectors and electrotransfer into Ouler Tibetan sheep fibroblasts. Finally, Sanger sequencing was performed to identify the target point mutation of FecB and GDF9 genes positive cells. T-A cloning was used to estimate the editing efficiency of the single base editing system. We obtained gRNA targeting FecB and GDF9 genes and constructed the vector aiming at mutating single base of FecB and GDF9 genes in Ouler Tibetan sheep. The editing efficiency for the target site of FecB gene was 39.13%, whereas the editing efficiency for the target sites (G260, G721 and G1184) of GDF9 gene were 10.52%, 26.67% and 8.00%, respectively. Achieving single base mutation in FecB and GDF9 genes may facilitate improving the reproduction traits of Ouler Tibetan sheep with multifetal lambs.
Animals
;
Sheep/genetics*
;
Gene Editing
;
Tibet
;
Mutation
;
Phenotype
;
Mutagenesis, Site-Directed
9.Genetic and histological relationship between pheromone-secreting tissues of the musk gland and skin of juvenile Chinese forest musk deer(Moschus berezovskii Flerov,1929)
LI LONG ; CAO HERAN ; YANG JINMENG ; JIN TIANQI ; MA YUXUAN ; WANG YANG ; LI ZHENPENG ; CHEN YINING ; GAO HUIHUI ; ZHU CHAO ; YANG TIANHAO ; DENG YALONG ; YANG FANGXIA ; DONG WUZI
Journal of Zhejiang University. Science. B 2023;24(9):807-822,中插1-中插4
Background:The musk glands of adult male Chinese forest musk deer(Moschus berezovskii Flerov,1929)(FMD),which are considered as special skin glands,secrete a mixture of sebum,lipids,and proteins into the musk pod.Together,these components form musk,which plays an important role in attracting females during the breeding season.However,the relationship between the musk glands and skin of Chinese FMD remains undiscovered.Here,the musk gland and skin of Chinese FMD were examined using histological analysis and RNA sequencing(RNA-seq),and the expression of key regulatory genes was evaluated to determine whether the musk gland is derived from the skin.Methods:A comparative analysis of musk gland anatomy between juvenile and adult Chinese FMD was conducted.Then,based on the anatomical structure of the musk gland,skin tissues from the abdomen and back as well as musk gland tissues were obtained from three juvenile FMD.These tissues were used for RNA-seq,hematoxylin-eosin(HE)staining,immunohistochemistry(IHC),western blot(WB),and quantitative real-time polymerase chain reaction(qRT-PCR)experiments.Results:Anatomical analysis showed that only adult male FMD had a complete glandular organ and musk pod,while juvenile FMD did not have any well-developed musk pods.Transcriptomic data revealed that 88.24%of genes were co-expressed in the skin and musk gland tissues.Kyoto Encyclopedia of Genes and Genomes(KEGG)signaling pathway analysis found that the genes co-expressed in the abdomen skin,back skin,and musk gland were enriched in biological development,endocrine system,lipid metabolism,and other pathways.Gene Ontology(GO)enrichment analysis indicated that the genes expressed in these tissues were enriched in biological processes such as multicellular development and cell division.Moreover,the Metascape predictive analysis tool demonstrated that genes expressed in musk glands were skin tissue-specific.qRT-PCR and WB revealed that sex-determining region Y-box protein 9(Sox9),Caveolin-1(Cav-1),and androgen receptor(AR)were expressed in all three tissues,although the expression levels differed among the tissues.According to the IHC results,Sox9 and AR were expressed in the nuclei of sebaceous gland,hair follicle,and musk gland cells,whereas Cav-1 was expressed in the cell membrane.Conclusions:The musk gland of Chinese FMD may be a derivative of skin tissue,and Sox9,Cav-1,and AR may play significant roles in musk gland development.
10.Transcriptome-wide Dynamics of m6A mRNA Methylation During Porcine Spermatogenesis.
Zidong LIU ; Xiaoxu CHEN ; Pengfei ZHANG ; Fuyuan LI ; Lingkai ZHANG ; Xueliang LI ; Tao HUANG ; Yi ZHENG ; Taiyong YU ; Tao ZHANG ; Wenxian ZENG ; Hongzhao LU ; Yinghua LV
Genomics, Proteomics & Bioinformatics 2023;21(4):729-741
Spermatogenesis is a continual process that occurs in the testes, in which diploid spermatogonial stem cells (SSCs) differentiate and generate haploid spermatozoa. This highly efficient and intricate process is orchestrated at multiple levels. N6-methyladenosine (m6A), an epigenetic modification prevalent in mRNAs, is implicated in the transcriptional regulation during spermatogenesis. However, the dynamics of m6A modification in non-rodent mammalian species remains unclear. Here, we systematically investigated the profile and role of m6A during spermatogenesis in pigs. By analyzing the transcriptomic distribution of m6A in spermatogonia, spermatocytes, and round spermatids, we identified a globally conserved m6A pattern between porcine and murine genes with spermatogenic function. We found that m6A was enriched in a group of genes that specifically encode the metabolic enzymes and regulators. In addition, transcriptomes in porcine male germ cells could be subjected to the m6A modification. Our data show that m6A plays the regulatory roles during spermatogenesis in pigs, which is similar to that in mice. Illustrations of this point are three genes (SETDB1, FOXO1, and FOXO3) that are crucial to the determination of the fate of SSCs. To the best of our knowledge, this study for the first time uncovers the expression profile and role of m6A during spermatogenesis in large animals and provides insights into the intricate transcriptional regulation underlying the lifelong male fertility in non-rodent mammalian species.
Animals
;
Male
;
Mice
;
Cell Differentiation/genetics*
;
Mammals/metabolism*
;
Methylation
;
RNA, Messenger/metabolism*
;
Spermatogenesis/genetics*
;
Spermatozoa/metabolism*
;
Swine/genetics*
;
Testis/metabolism*
;
Transcriptome
;
RNA Methylation/genetics*


Result Analysis
Print
Save
E-mail