1.Analysis of Quality Changes of Small Packaged Alismatis Rhizoma Decoction Pieces Under Different Packaging and Storage Conditions
Gaoting YANG ; Rui XIAN ; Zimin WANG ; Zongyi ZHAO ; Zhiqiong LAN ; Xiaoli PAN ; Min LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):179-188
ObjectiveTo screen suitable packaging and storage conditions for small packaged Alismatis Rhizoma decoction pieces, laying the foundation for developing standardized storage, maintenance techniques and determining shelf life. MethodsUsing the accelerated stability test method, the small packaged decoction pieces of Alismatis Rhizoma were placed in polyethylene plastic bags, aluminum foil polyethylene composite bags, and cowhide coated paper bags under temperature of (40±2) ℃ and relative humidity of (75±5)% conditions, the quality testing was conducted at the end of the 0th, 1st, 2nd, 3rd, and 6th month, respectively. Using long-term stability test method, an orthogonal experiment was designed to investigate storage conditions, packaging materials, and packaging methods. At the end of the 0th, 1st, 3rd, 6th, 9th, 12th, 18th, and 24th month, the quality of small packaged Alismatis Rhizoma decoction pieces was tested under different packaging and storage conditions(including 2 packaging methods:vacuum packaging and sealed packaging, 3 storage conditions:room temperature, cool, and modified atmosphere, 3 packaging materials:cowhide coated paper bag, aluminum foil polyethylene composite bag, and polyethylene plastic bag). Then, the G1-entropy weight method combined with orthogonal experiment was used to analyze the quality changes of the decoction pieces under different packaging and storage conditions to identify optimal packaging and storage conditions. The quality testing indicators for Alismatis Rhizoma decoction pieces were expanded beyond those specified in the 2020 edition of the Pharmacopoeia of the People's Republic of China. In addition to the existing indicators(characteristics, moisture content, extractives, and the total content of 23-acetyl alisol B and 23-acetyl alisol C), new indicators including color value, water activity, total triterpenoid content, and alisol B content have been added. ResultsThe accelerated stability test results indicated that the quality of small packaged Alismatis Rhizoma decoction pieces was more stable when packaged in aluminum foil-polyethylene composite materials compared to cowhide-coated paper bags and polyethylene plastic bags. Analysis of the long-term stability test results using the G1-entropy weight method combined with orthogonal experiment revealed that storage conditions had the greatest impact on both raw and salt-processed products, followed by packaging materials, while the packaging method had the least influence. For both types of small packaged Alismatis Rhizoma decoction pieces, modified atmosphere storage demonstrated superior efficacy compared to cool storage or room temperature storage. Storage in aluminum foil-polyethylene composite bags was superior to polyethylene plastic bags or cowhide-coated paper bags. However, the stability of sealed raw products was better than vacuum-packed ones, whereas vacuum-packed salt-processed products exhibited greater stability than their sealed counterparts. ConclusionBased on the results of the quality changes of small packaged Alismatis Rhizoma decoction pieces under different storage conditions, it is recommended that the suitable storage packaging conditions for small packaged raw products are sealed packaging with aluminum foil polyethylene composite bags and controlled atmosphere storage, and the suitable storage and packaging conditions for small packaged salt-processed products are vacuum packaging with aluminum foil polyethylene composite bags and controlled atmosphere storage.
2.Effect of Zuogui Wan and Yougui Wan on Mitochondrial Biogenesis in BMSCs Through PGC-1α/PPARγ
Ying YANG ; Xiuzhi FENG ; Yiran CHEN ; Zhimin WANG ; Xian GUO ; Yanling REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):28-36
ObjectiveBased on the TCM theory of "Yang transforms materials to Qi while Yin constitutes material form", this paper explored the effects of Zuogui Wan and Yougui Wan on the molecular mechanism of mitochondrial biogenesis during the adipogenic differentiation process of rat bone marrow mesenchymal stem cells (BMSCs) by mediating peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and peroxisome proliferators-activated receptor γ (PPARγ), providing theoretical support for the prevention and treatment of postmenopausal osteoporosis (PMOP) using Zuogui Wan and Yougui Wan. MethodsBMSCs were divided into a blank group, Zuogui Wan (ZGW) group, Yougui Wan (YGW) group, and Progynova group. Cell identification was performed using flow cytometry. The growth curves of BMSCs were plotted using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) method, and the effects of Zuogui Wan and Yougui Wan on the proliferation of BMSCs were detected. The Oil red O staining method was used to detect lipid droplet formation. The Western blot method was used to detect the expression of adipogenesis-related factors PPARγ, CCAAT/enharcer-binding protein (C/EBP)α, C/EBPβ, lipoprotein lipase (LPL) protein, brown adipose tissue-related (BAT) proteins PGC-1α, uncoupcing protein 1 (UCP1), PR domdin-containing protein 16 (PRDM16), mitochondrial biogenesis-related PGC-1α, nuclear respiratory factor 1 (Nrf1), nuclear factor E2-related factor 2 (Nrf2), and mitochondrial transcription factor A (TFAM). The expression of adipogenesis-related factors PPARγ, C/EBPα, C/EBPβ, LPL genes, and the copy number of cytochrome B (CytoB mtDNA) gene was detected using real-time polymerase chain reaction (Real-time PCR). Mitochondrial ultrastructure was detected using transmission electron microscopy. ResultsCompared with that in the blank group, the proliferation ability of BMSCs in each treatment group increased continuously as the intervention progressed, and lipid droplets significantly decreased after the drug intervention. The mRNA and protein expression levels of adipogenesis-related factors PPARγ, C/EBPα, C/EBPβ, and LPL were significantly downregulated (P<0.01), while those of the BAT-related factors PGC-1α, UCP1, PRDM16 were significantly upregulated (P<0.01). The number of mitochondria increased, accompanied by reduced swelling. The double membrane and cristae structure were clear, and the internal cristae rupture was reduced. The copy number of CytoB mtDNA in each treatment group was significantly increased (P<0.01). The protein expression levels of mitochondrial biogenesis-related PGC-1α, Nrf1, Nrf2, and TFAM in each treatment group were significantly increased (P<0.01). ConclusionBoth Zuogui Wan and Yougui Wan can prevent and treat PMOP by intervening in mitochondrial biogenesis in BMSCs through PGC-1α/PPARγ.
3.Advances in the application of physiologically-based pharmacokinetic model in EGFR-TKI precision therapy
Yingying YANG ; Jiaqi SHAO ; Qiulin XIANG ; Guoxing LI ; Xian YU
China Pharmacy 2025;36(8):1013-1018
Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) represent a class of small-molecule targeted therapeutics for oncology treatment, and serve as first-line therapy for advanced non-small cell lung cancer (NSCLC) with EGFR- sensitive mutations, with representative agents including gefitinib, dacomitinib, and osimertinib. In clinical practice, dose adjustment of EGFR-TKI may be required for cancer patients under special circumstances such as drug combinations or hepatic/ renal impairment. Physiologically-based pharmacokinetic (PBPK) model, capable of predicting pharmacokinetic (PK) processes in humans, has emerged as a vital tool for clinical dose optimization. This article sorts the modeling methodologies, workflows, and commonly used software tools for PBPK model, and summarizes the current applications of PBPK model in EGFR-TKI precision therapy as of June 30, 2024. Findings demonstrate that PBPK modeling methods commonly employ the “bottom-up” approach and the middle-out approach. The process typically involves four steps: parameter collection, compartment selection, model validation, and model application. Commonly used software for modeling includes Simcyp, GastroPlus, and open-source software such as PK- Sim. PBPK model can be utilized for predicting drug-drug interactions of EGFR-TKI co-administered with metabolic enzyme inducers or inhibitors, acid-suppressive drugs, or traditional Chinese and Western medicines. It can also adjust dosages in conjunction with genomics, predict PK processes in special populations (such as patients with liver or kidney dysfunction, pediatric patients), evaluate the efficacy and safety of drugs, and extrapolate PK predictions from animal models to humans.
4.Construction and Validation of a Large Language Model-Based Intelligent Pre-Consultation System for Traditional Chinese Medicine
Yiqing LIU ; Ying LI ; Hongjun YANG ; Linjing PENG ; Nanxing XIAN ; Kunning LI ; Qiwei SHI ; Hengyi TIAN ; Lifeng DONG ; Lin WANG ; Yuping ZHAO
Journal of Traditional Chinese Medicine 2025;66(9):895-900
ObjectiveTo construct a large language model (LLM)-based intelligent pre-consultation system for traditional Chinese medicine (TCM) to improve efficacy of clinical practice. MethodsA TCM large language model was fine-tuned using DeepSpeed ZeRO-3 distributed training strategy based on YAYI 2-30B. A weighted undirected graph network was designed and an agent-based syndrome differentiation model was established based on relationship data extracted from TCM literature and clinical records. An agent collaboration framework was developed to integrate the TCM LLM with the syndrome differentiation model. Model performance was comprehensively evaluated by Loss function, BLEU-4, and ROUGE-L metrics, through which training convergence, text generation quality, and language understanding capability were assessed. Professional knowledge test sets were developed to evaluate system proficiency in TCM physician licensure content, TCM pharmacist licensure content, TCM symptom terminology recognition, and meridian identification. Clinical tests were conducted to compare the system with attending physicians in terms of diagnostic accuracy, consultation rounds, and consultation duration. ResultsAfter 100 000 iterations, the training loss value was gradually stabilized at about 0.7±0.08, indicating that the TCM-LLM has been trained and has good generalization ability. The TCM-LLM scored 0.38 in BLEU-4 and 0.62 in ROUGE-L, suggesting that its natural language processing ability meets the standard. We obtained 2715 symptom terms, 505 relationships between diseases and syndromes, 1011 relationships between diseases and main symptoms, and 1 303 600 relationships among different symptoms, and constructed the Agent of syndrome differentiation model. The accuracy rates in the simulated tests for TCM practitioners, licensed pharmacists of Chinese materia medica, recognition of TCM symptom terminology, and meridian recognition were 94.09%, 78.00%, 87.50%, and 68.80%, respectively. In clinical tests, the syndrome differentiation accuracy of the system reached 88.33%, with fewer consultation rounds and shorter consultation time compared to the attending physicians (P<0.01), suggesting that the system has a certain pre- consultation ability. ConclusionThe LLM-based intelligent TCM pre-diagnosis system could simulate diagnostic thinking of TCM physicians to a certain extent. After understanding the patients' natural language, it collects all the patient's symptom through guided questioning, thereby enhancing the diagnostic and treatment efficiency of physicians as well as the consultation experience of the patients.
5.Reflections on Constructing a Traditional Chinese Medicine Syndrome Element Differentiation System for Coronary Artery Disease Based on Disease Progression
Yumeng YANG ; Dayang WANG ; Yandi WAN ; Xian WANG
Journal of Traditional Chinese Medicine 2025;66(9):906-911
With the evolving understanding of the diagnosis and treatment of coronary artery disease (CAD), current syndrome differentiation systems in traditional Chinese medicine (TCM) are increasingly insufficient in capturing the dynamic progression of the disease and often overlook clinical prognosis. This paper proposes the establishment of a TCM syndrome element differentiation system for CAD based on disease progression. Syndrome elements are categorized into core elements, fundamental elements, and evolutionary elements. The core element is blood stasis, which is regarded as the primary pathogenic factor in the onset of CAD. The fundamental elements, qi stagnation, cold congealment, phlegm turbidity, qi deficiency, yin deficiency, and yang deficiency, are commonly coexisting factors throughout the course of CAD. The evolutionary elements, collateral wind and latent toxin, are key pathogenic factors driving the transformation from chronic to acute stages of the disease. This new system aims to emphasize the evolution of disease over time, with a focus on improving long-term clinical outcomes.
6.Stress analysis of computer aided design/computer aided manufacture post-core materials with different elastic moduli
Liangwei XU ; Xitian TIAN ; Lin CHEN ; Hongyan GAO ; Xian ZHU ; Guican YANG ; Yinghao CHEN
Chinese Journal of Tissue Engineering Research 2025;29(10):2061-2066
BACKGROUND:Post and core restoration is a common choice for tooth defects,but the repair effects of various post and core materials are different. OBJECTIVE:To evaluate the stress distribution at the post and core,tooth root,and bonding agent site of post and core models made of different elastic modulus post and core materials using finite element method. METHODS:A three-dimensional root canal treated maxillary central incisor model was built using three-dimensional modeling software,which was restored with a full ceramic crown.The post and core materials in the restoration used nanoceramic resin(elastic modulus=12.8 GPa),composite resin(elastic modulus=16 GPa),hybrid ceramic(elastic modulus=34.7 GPa),glass ceramic(elastic modulus=95 GPa),titanium alloy(elastic modulus=112 GPa),and zirconia(elastic modulus=209.3 GPa).The model was fixed in cortical bone.A 100 N concentrated force of 45° from the long axis of the tooth was applied to 1/3 of the crown and tongue side of the central incisor.The stress distribution of the post and core,dentin,and tooth-root bonding agent in the model was repaired by the maximum principal stress criterion. RESULTS AND CONCLUSION:(1)When the post and core materials with higher elastic modulus was used,the post-core stress in the repair model was more concentrated.When the elastic modulus of the post and core materials(nanoceramic resin and composite resin)was close to dentin,the stress distribution of the post and core was more uniform.The stress distribution of dentin in all restoration models was similar regardless of post and core materials.When the post and core with higher elastic modulus was used,more stress concentration was shown at the post and root bonding agent in the repair model.(2)The maximum stress values at the post and core,tooth root,and the bonding agent site of post and tooth root in the nanoceramic resin model were 31.00,33.21,and 0.51 MPa,respectively.The maximum stress values at the post and core,tooth root,and the bonding agent between the post and tooth root in the composite resin model were 36.84,33.14,and 0.59 MPa,respectively.In the mixed ceramic model,the maximum stress values at the post and core,tooth root,and the bonding agent between the post and tooth root were 64.05,32.83,and 1.00 MPa,respectively.In the glass ceramic model,the maximum stress values at the post and core,tooth root,and the bonding agent between the post and tooth root were 112.30,32.69,and 1.73 MPa,respectively.In the titanium alloy model,the maximum stress values of the post and core,tooth root,and the bonding agent between the post and tooth root were 120.00,32.17,and 1.86 MPa,respectively.In the zirconia model,the maximum stress values of the post and core,tooth root,and the bonding agent between the post and tooth root were 148.80,31.85,and 2.28 MPa,respectively.(3)The higher the elastic modulus of the post and core material,the higher the maximum stress at the post and core during restoration.The elastic modulus of the post and core material had no significant effect on the maximum stress of the dental bonding agent and dentin.
7.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
8.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals
9.Regulatory effects of Dangua Humai Oral Liquid on gut microbiota and mucosal barrier in mice with glucolipid metabolism disorder.
Zhuang HAN ; Lin-Xi JIN ; Zhi-Ta WANG ; Liu-Qing YANG ; Liang LI ; Yi RUAN ; Qi-Wei CHEN ; Shu-Hong YAO ; Xian-Pei HENG
China Journal of Chinese Materia Medica 2025;50(15):4315-4324
The gut microbiota regulates intestinal nutrient absorption, participates in modulating host glucolipid metabolism, and contributes to ameliorating glucolipid metabolism disorder. Dysbiosis of the gut microbiota can compromise the integrity of the intestinal mucosal barrier, induce inflammatory responses, and exacerbate insulin resistance and abnormal lipid metabolism in the host. Dangua Humai Oral Liquid, a hospital-developed formulation for regulating glucolipid metabolism, has been granted a national invention patent and demonstrates significant clinical efficacy. This study aimed to investigate the effects of Dangua Humai Oral Liquid on gut microbiota and the intestinal mucosal barrier in a mouse model with glucolipid metabolism disorder. A glucolipid metabolism disorder model was established by feeding mice a high-glucose and high-fat diet. The mice were divided into a normal group, a model group, and a treatment group, with eight mice in each group. The treatment group received a daily gavage of Dangua Humai Oral Liquid(20 g·kg~(-1)), while the normal group and model group were given an equivalent volume of sterile water. After 15 weeks of intervention, glucolipid metabolism, intestinal mucosal barrier function, and inflammatory responses were evaluated. Metagenomics and untargeted metabolomics were employed to analyze changes in gut microbiota and associated metabolic pathways. Significant differences were observed between the indicators of the normal group and the model group. Compared with the model group, the treatment group exhibited marked improvements in glucolipid metabolism disorder, alleviated pathological damage in the liver and small intestine tissue, elevated expression of recombinant claudin 1(CLDN1), occluding(OCLN), and zonula occludens 1(ZO-1) in the small intestine tissue, and reduced serum levels of inflammatory factors lipopolysaccharides(LPS), lipopolysaccharide-binding protein(LBP), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α). At the phylum level, the relative abundance of Bacteroidota decreased, while that of Firmicutes increased. Lipid-related metabolic pathways were significantly altered. In conclusion, based on the successful establishment of the mouse model of glucolipid metabolism disorder, this study confirmed that Dangua Humai Oral Liquid effectively modulates gut microbiota and mucosal barrier function, reduces serum inflammatory factor levels, and regulates lipid-related metabolic pathways, thereby ameliorating glucolipid metabolism disorder.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Mice
;
Intestinal Mucosa/microbiology*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Glycolipids/metabolism*
;
Lipid Metabolism/drug effects*
;
Administration, Oral
;
Disease Models, Animal
10.Design, synthesis, and antitumor activity of novel thioheterocyclic nucleoside derivatives by suppressing the c-MYC pathway.
Xian-Jia LI ; Ke-Xin HUANG ; Ke-Xin WANG ; Ru LIU ; Dong-Chao WANG ; Yu-Ru LIANG ; Er-Jun HAO ; Yang WANG ; Hai-Ming GUO
Acta Pharmaceutica Sinica B 2025;15(7):3685-3707
Eightly-four novel thioheterocyclic nucleoside derivatives were designed, synthesized, and evaluated for antitumor activity in vitro and in vivo. Most of the compounds inhibited the growth of HCT116 and HeLa cancer cells in vitro, among them 33a and 36b exhibited potent activity against HCT116 cells (IC50 = 0.27 and 0.49 μmol/L, respectively). Both compounds 33a and 36b inhibited cell metastasis, arrested the cell cycle in the G2/M phase, and induced apoptosis in vitro. Mechanistic studies revealed that 33a and 36b increased ROS levels, led to DNA damage, ER stress, and mitochondrial dysfunction, and inhibited autophagy in HCT116 cells. Biological information analysis, RNA-sequencing, Gene Set Enrichment Analysis (GSEA), drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and SPR experiments identified that compounds 33a and 36b showed antitumor activity by suppressing the c-MYC pathway. c-MYC silencing assays indicated that c-MYC proteins participated in 33a-mediated anticancer activities in HCT116 cells. More importantly, compound 33a presented favorable pharmacokinetic properties in mice (T 1/2 = 6.8 h) and showed significant antitumor efficacy in vivo without obvious toxicity, showing promising potential for further clinical development.

Result Analysis
Print
Save
E-mail