1.Application and progress of artificial intelligence in the analysis of retinal vascular parameters
Zhaoyang ZHAO ; Huilin LI ; Yanfeng SHANG ; Sisi MENG ; Shaofeng HAO
International Eye Science 2025;25(5):787-791
This review summarizes the applications and advancements of artificial intelligence(AI)in the analysis of retinal vascular parameters. Retinal vascular parameters, including vessel diameter, fractal dimension, vascular tortuosity, branching angles, and vessel density, are important indicators for assessing changes in the retinal vascular network structure. These parameters are not only related to various ophthalmic diseases but also reflect the conditions of systemic diseases such as diabetes and Alzheimer's disease. This article provides a detailed discussion on the advantages of AI technology in the automated identification and quantification of retinal vascular parameters, particularly in improving measurement efficiency and accuracy, and enabling the early detection and monitoring of various diseases. Additionally, the challenges faced by AI in the analysis of retinal vascular parameters were discussed, such as data standardization and insufficient sample diversity, and proposes directions for future research. By thoroughly analyzing the application of AI in retinal vascular parameter analysis, this article aims to offer new perspectives and methods for clinical diagnosis and early intervention of diseases, holding significant clinical significance and application prospects.
2.Research Progress on Immunomodulatory Activity and Mechanism of Polygonatum sibiricum
Jinyu LI ; Ningning QIU ; Chang YI ; Mengqin ZHU ; Yanfeng YUAN ; Guang CHEN ; Xili ZHANG ; Wenlong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):298-306
Polygonatum sibiricum, as a traditional Chinese medicine with both medicinal and edible properties, has attracted considerable attention due to its functions of nourishing Yin and moistening the lungs, tonifying the spleen and benefiting Qi, and nourishing the kidneys and filling essence. Recent studies have demonstrated that Polygonatum sibiricum plays a significant role in regulating the immune system, effectively enhancing and improving the morphology and function of immune organs, stimulating the proliferation and activation of immune cells, and regulating the secretion and release of immune factors, thereby enhancing the immune function of the body and improving various immune-related diseases. Although a large number of studies have explored the pharmacological effects and mechanisms of P. sibiricum, there has been no systematic review and summary of its immune regulatory activity and mechanisms. Therefore, this article comprehensively reviews the research achievements of P. sibiricum polysaccharides and saponins in the field of immune regulation in recent years, and further sorts out the immune regulatory mechanisms of P. sibiricum in multiple aspects: including increasing the organ index of the spleen and thymus, increasing the number and activity of tumor-suppressive bone marrow hematopoietic stem cells, improving intestinal flora imbalance, regulating the quantity and proportion of T lymphocyte subsets, increasing the level of immunoglobulin, promoting the proliferation of macrophages, enhancing the activity of natural killer cells, increasing the number of white blood cells, and promoting the maturation of dendritic cells, providing a solid theoretical basis and scientific evidence for the research and application of P. sibiricum, and promoting its development and application in traditional Chinese medicine immune enhancers and various functional products.
3.Early assessment of responsive neurostimulation for drug-resistant epilepsy in China: A multicenter, self-controlled study.
Yanfeng YANG ; Penghu WEI ; Jianwei SHI ; Ying MAO ; Jianmin ZHANG ; Ding LEI ; Zhiquan YANG ; Shiwei SONG ; Ruobing QIAN ; Wenling LI ; Yongzhi SHAN ; Guoguang ZHAO
Chinese Medical Journal 2025;138(4):430-440
BACKGROUND:
To evaluate the efficacy and safety of the first cohort of people in China treated with a responsive neurostimulation system (Epilcure TM , GenLight MedTech, Hangzhou, China) for focal drug-resistant epilepsy in this study.
METHODS:
This multicenter, before-and-after self-controlled study was conducted across 8 centers from March 2022 to June 2023, involving patients with drug-resistant epilepsy who were undergoing responsive neurostimulation (RNS). The study was based on an ongoing multi-center, single-blind, randomized controlled study. Efficacy was assessed through metrics including median seizure count, seizure frequency reduction (SFR), and response rate. Multivariable linear regression analysis was conducted to explore the relationships of basic clinical factors and intracranial electrophysiological characteristics with SFR. The postoperative quality of life, cognitive function, depression, and anxiety were evaluated as well.
RESULTS:
The follow-up period for the 19 participants was 10.7 ± 3.4 months. Seizure counts decreased significantly 6 months after device activation, with median SFR of 48% at the 6th month (M6) and 58% at M12 ( P <0.05). The average response rate after 13 months of treatment was 42%, with 21% ( n = 4) of the participants achieving seizure freedom. Patients who have previously undergone resective surgery appear to achieve better therapeutic outcomes at M11, M12 and M13 ( β <0, P <0.05). No statistically significant differences were observed in patients' scores of quality of life, cognition, depression and anxiety following stimulation when compared to baseline measurements. No serious adverse events related to the devices were observed.
CONCLUSIONS:
The preliminary findings suggest that Epilcure TM exhibits promising therapeutic potential in reducing the frequency of epileptic seizures. However, to further validate its efficacy, larger-scale randomized controlled trials are required.
REGISTRATION
Chinese Clinical Trial Registry (No. ChiCTR2200055247).
Humans
;
Female
;
Male
;
Drug Resistant Epilepsy/therapy*
;
Adult
;
Young Adult
;
Middle Aged
;
China
;
Adolescent
;
Treatment Outcome
;
Quality of Life
;
Single-Blind Method
;
Seizures
;
Electric Stimulation Therapy/methods*
4.Functional chimeric perforator flap of medial femoral condyle for osteochondral and soft tissue reconstruction in hand and foot joints.
Mingwu ZHOU ; Yanfeng LI ; Yang GAO ; Kai ZHANG ; Zhiwei ZHAO ; Kuo WEI ; Jia CHEN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1106-1113
OBJECTIVE:
To evaluate the effectiveness of free medial femoral condyle (MFC) functional chimeric perforator flap (FCPF) transplantation in reconstructing joint function by repairing concomitant osteochondral defects and soft tissue defect in hand and foot joints.
METHODS:
A retrospective analysis was performed on 6 patients (5 males, 1 female; mean age of 33.4 years, range 21-56 years) with traumatic osteochondral joint defects and associated tendon, nerve, and soft tissue defects treated between January 2019 and November 2024. Defect locations included metacarpal heads (n=2), metacarpophalangeal joint (n=1), first metatarsal head (n=1), base of first proximal phalanx (n=1), and talar head (n=1), with soft tissue defects in all cases. Osteochondral defect sizes ranged from 1.5 cm×1.2 cm×0.7 cm to 4.0 cm×0.6 cm×0.6 cm, and skin defects ranged from 4 cm×3 cm to 13 cm×4 cm. The stage Ⅰ treatment included debridement, antibiotic-loaded bone cement filling of bone-cartilage defects, fracture internal fixation, and coverage with vacuum sealing drainage. Stage Ⅱ involved harvesting a free MFC- FCPF included an osteochondral flap (range of 1.5 cm×1.2 cm×0.7 cm to 4.0 cm×0.6 cm×0.6 cm), gracilis and/or semitendinosus tendon grafts (length of 4-13 cm), saphenous nerve graft (length of 3.5-4.0 cm), and a perforator skin flap (range of 6 cm×4 cm to 14 cm×6 cm), each with independent vascular supply. The flap was transplanted to reconstruct joint function. Donor sites were closed primarily or with skin grafting. Flap survival was monitored postoperatively. Radiographic assessment was used to evaluate bone/joint healing. At last follow-up, the joint function recovery was assessed.
RESULTS:
All 6 MFC-FCPF survived completely, with primary healing of wounds and donor sites. All patients were followed up 6-44 months (mean, 23.5 months). The flaps at metacarpophalangeal joint in 1 case and at ankle joint in 1 case were treated with degreasing repair because of their bulky appearance, while the other flaps had good appearance and texture. At 3 months after operation, the visual analogue scale (VAS) score for pain during joint movement of recipient site was 0-2, with an average of 0.7; at last follow-up, the VAS score of the donor site was 0-1, with an average of 0.3. According to the Paley fracture healing scoring system, the osteochondral healing of all the 6 patients was excellent. The range of motion of the metacarpophalangeal joint in 3 cases was 75%, 90%, and 100% of contralateral side respectively, the range of motion of the metatarsophalangeal joint in 2 cases was 65% and 95% of contralateral side respectively, and the range of motion of the ankle joint in 1 case was 90% of contralateral side. The hand function was evaluated as excellent in 2 cases and good in 1 case according to the upper limb function evaluation standard of the Chinese Medical Association Hand Surgery Society, and the foot function was evaluated as excellent in 2 cases and fair in 1 case according to the Maryland foot function score of 93, 91, and 69, respectively. The International Knee Documentation Committee (IKDC) score of 6 knees was 91-99, with an average of 95.2.
CONCLUSION
The free MFC-FCPF enables precise anatomical joint reconstruction with three-dimensional restoration of tendon, nerve, capsule, and soft tissue defects, effectively restoring joint function and improving quality of life.
Humans
;
Male
;
Adult
;
Female
;
Middle Aged
;
Retrospective Studies
;
Plastic Surgery Procedures/methods*
;
Soft Tissue Injuries/surgery*
;
Perforator Flap/blood supply*
;
Femur/surgery*
;
Young Adult
;
Foot Joints/injuries*
;
Treatment Outcome
5.Nose-to-brain delivery of targeted lipid nanoparticles as two-pronged β-amyloid nanoscavenger for Alzheimer's disease therapy.
Yanyan XU ; Xiangtong YE ; Yanfeng DU ; Wenqin YANG ; Fan TONG ; Wei LI ; Qianqian HUANG ; Yongke CHEN ; Hanmei LI ; Huile GAO ; Weiwei ZHANG
Acta Pharmaceutica Sinica B 2025;15(6):2884-2899
Alzheimer's disease (AD), characterized by β-amyloid (Aβ) aggregation and neuroinflammation, remains a formidable clinical challenge. Herein, we present an innovative nose-to-brain delivery platform utilizing lactoferrin (Lf)-functionalized lipid nanoparticles (LNPs) co-encapsulating α-mangostin (α-M) and β-site APP cleaving enzyme 1 (BACE1) siRNA (siB). This dual-modal therapeutic system synergistically combines the neuroprotective and microglia-reprogramming capabilities of α-M with the transcriptional silencing of BACE1 via siB, thereby simultaneously inhibiting Aβ production and enhancing its clearance. Fabricated via a microfluidic approach, the LNPs exhibited uniform particle size distribution, great encapsulation efficiency, and robust colloidal stability. Upon intranasal administration, Lf-functionalization enabled superior brain-targeting efficacy through receptor-mediated transcytosis. In vitro studies demonstrated that α-M reversed Aβ-induced low-density lipoprotein receptor downregulation, promoting microglial phagocytosis and autophagic degradation of Aβ, while siB effectively suppressed BACE1 expression, abrogating Aβ synthesis. In vivo investigations in APP/PS1 transgenic mice revealed remarkable cognitive recovery, substantial Aβ plaque reduction, and alleviation of neuroinflammation and oxidative stress. This intricately designed LNP system, exploiting a non-invasive and efficient nose-to-brain delivery route, provides a biocompatible, synergistic, and transformative therapeutic strategy for the multifaceted management of AD.
6.Inhibition of WAC alleviates the chondrocyte proinflammatory secretory phenotype and cartilage degradation via H2BK120ub1 and H3K27me3 coregulation.
Peitao XU ; Guiwen YE ; Xiaojun XU ; Zhidong LIU ; Wenhui YU ; Guan ZHENG ; Zepeng SU ; Jiajie LIN ; Yunshu CHE ; Yipeng ZENG ; Zhikun LI ; Pei FENG ; Qian CAO ; Zhongyu XIE ; Yanfeng WU ; Huiyong SHEN ; Jinteng LI
Acta Pharmaceutica Sinica B 2025;15(8):4064-4077
Several types of arthritis share the common feature that the generation of inflammatory mediators leads to joint cartilage degradation. However, the shared mechanism is largely unknown. H2BK120ub1 was reportedly involved in various inflammatory diseases but its role in the shared mechanism in inflammatory joint conditions remains elusive. The present study demonstrated that levels of cartilage degradation, H2BK120ub1, and its regulator WW domain-containing adapter protein with coiled-coil (WAC) were increased in cartilage in human rheumatoid arthritis (RA) and osteoarthritis (OA) patients as well as in experimental RA and OA mice. By regulating H2BK120ub1 and H3K27me3, WAC regulated the secretion of inflammatory and cartilage-degrading factors. WAC influenced the level of H3K27me3 by regulating nuclear entry of the H3K27 demethylase KDM6B, and acted as a key factor of the crosstalk between H2BK120ub1 and H3K27me3. The cartilage-specific knockout of WAC demonstrated the ability to alleviate cartilage degradation in collagen-induced arthritis (CIA) and collagenase-induced osteoarthritis (CIOA) mice. Through molecular docking and dynamic simulation, doxercalciferol was found to inhibit WAC and the development of cartilage degradation in the CIA and CIOA models. Our study demonstrated that WAC is a key factor of cartilage degradation in arthritis, and targeting WAC by doxercalciferol could be a viable therapeutic strategy for treating cartilage destruction in several types of arthritis.
7.Lcn2 secreted by macrophages through NLRP3 signaling pathway induced severe pneumonia.
Mingya LIU ; Feifei QI ; Jue WANG ; Fengdi LI ; Qi LV ; Ran DENG ; Xujian LIANG ; Shasha ZHOU ; Pin YU ; Yanfeng XU ; Yaqing ZHANG ; Yiwei YAN ; Ming LIU ; Shuyue LI ; Guocui MOU ; Linlin BAO
Protein & Cell 2025;16(2):148-155
8.Mechanism of Mitochondrial Quality Control in Ovarian Aging and Intervention of Traditional Chinese Medicine: A Review
Fei YAN ; Yanfeng LIU ; Qi ZHAO ; Xingtong LIU ; Ying LI ; Chang SHU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(18):291-298
Ovarian aging is a reproductive endocrine disease caused by a variety of factors leading to a gradual decline in ovarian function until ovarian failure, which seriously affects women's physical and reproductive health and is a major factor leading to female infertility. Mitochondria, the energy metabolism centers of cells, are critical for ovarian functions. Their structural and functional abnormalities are key pathological factors leading to the declined ovarian function. Mitochondrial quality control is an important endogenous regulatory mechanism for the maintenance of mitochondrial homeostasis and the improvement of mitochondrial functions. Abundant studies have shown that the dysregulation of mitochondrial quality control, characterized by mitochondrial oxidative damage, abnormal mitochondrial biogenesis, abnormal mitochondrial dynamics, abnormal mitochondrial autophagy, and dysregulated calcium homeostasis, is closely associated with the occurrence of ovarian hypofunction. Traditional Chinese medicine (TCM) is a treasure of China's medicine, demonstrating remarkable efficacy in the clinical treatment of ovarian aging-related diseases. In recent years, research progress has been achieved in the TCM treatment of ovarian aging by regulating mitochondrial quality control disorders in a multi-target and multi-pathway manner. However, systematic research remains to be carried out regarding the research progress in this field. Therefore, this article reviews the research progress in the TCM treatment of ovarian aging based on mitochondrial quality control, with a view to providing a theoretical basis for studying the clinical efficacy of TCM in the treatment of ovarian aging and a new strategy for the in-depth research on the prevention and treatment of ovarian aging by TCM.
9.Evolution and innovation of preservation fluid for donor liver
Guotao YU ; Yanfeng YIN ; Chuntao YAN ; Guangxu ZOU ; Huangyan ZHANG ; Li MA ; Zongqiang HU
Organ Transplantation 2024;15(1):131-137
Organ preservation fluid could mitigate cold ischemia injury and maintain normal function of the grafts. At present, how to reduce a series of injury caused by cold ischemia of donor liver and improve the preservation quality of grafts are the hot and challenging spots in this field. Currently, preservation fluid in clinical practice has not achieved ideal preservation effect, especially for the protection of marginal donor organs. In the context of severe donor shortage, the key solution is still to explore the optimal preservation protocol for donor liver to prevent grafts from cold ischemia injury. In this article, the mechanism of donor liver injury during cold ischemia, the classification and evolution of donor liver preservation fluid were summarized, the development direction and challenges of donor liver preservation fluid were discussed, aiming to provide novel ideas and references for the research and development of donor liver preservation fluid.
10.Biological characteristics of induction-produced polyploid tumor giant cells in ovarian cancer cell line SKOV3
Aiqi QIAO ; Xiaoyan YAN ; Gang LIANG ; Yanfeng XI ; Lingmin LI
Cancer Research and Clinic 2024;36(3):199-204
Objective:To investigate the morphological and biological characteristics of polyploid tumor giant cells (PGCC) produced by ovarian cancer cell line SKOV3 induced by CoCl 2. Methods:Human ovarian cancer cell line SKOV3 was induced-cultured with 300 μmol/L CoCl 2 in the simulated hypoxic environment for 36 h, the live cells continued to be conventionally cultured and passaged, and the cells collected 20 days later were PGCC group; SKOV3 cell line cultured conventionally was the control group. The formation process and morphological characteristics of PGCC were observed by inverted microscope. The expression of tumor stem cell markers OCT4 and CD117 were detected by immunocytochemistry. The adipogenic differentiation and osteogenic differentiation potential of PGCC were detected by using human bone marrow mesenchymal stem cell adipogenic differentiation assay kit and human bone marrow mesenchymal stem cell osteogenic differentiation assay kit.The cell migration ability of PGCC was detected by scratch assay. PGCC group and control group SKOV3 cells were treated with 1 μmol/L paclitaxel, and the cell morphology of the two groups was observed by microscope at 0, 24 and 48 h to detect the resistance of PGCC to chemotherapy drugs. Results:A small amount of PGCC was observed in SKOV3 cell line cultured in conventional medium under the microscope. CoCl 2 can induce SKOV3 cells to form PGCC, which was nearly round in shape and lacked branching. Its volume was 3 times or more than that of SKOV3 cells, and the nuclei were usually megakaryons or multinucleates, PGCC can produce daughter cells by budding. Immunocytochemical staining showed that OCT4 was positive in some PGCC, but no CD117 was positive. Neither OCT4 nor CD117 was expressed in SKOV3 cells. When cultured with lipid-induced differentiation medium of human bone marrow mesenchymal stem cells, the formation of large vacuoles in the cytoplasm of PGCC was observed at the 3rd cycle, and orange-red, round-like lipid droplets were shown by oil red O staining. Human bone marrow mesenchymal stem cells were cultured in osteogenic induction culture medium for 20 days, and alizarin red staining showed that calcium nodules formed significantly in cells of PGCC group compared with the control group. The cell scratch assay results showed that the migration rates of PGCC cultured in serum-free medium [(59±1)%, (66±3)%] were higher than those of the control group [(11±3)%, (14±5)%] at 24 and 48 h after scratch ( t values were 32.20 and 19.55, both P < 0.001). The migration rates of PGCC cultured in 10% serum medium [(92±3)%, (100±0)%] were higher than those of the control group [(20±6)%, (59±9)%] ( t values were 16.19 and 8.00, both P < 0.001). After 1 μmol/L paclitaxel treatment for 48 h, most of the cells in the PGCC group still survived, while most of the SKOV3 cells in the control group died. Conclusions:PGCC produces daughter cells by budding. PGCC has the characteristics of tumor stem cells: it expresses tumor stem cell markers and has the potential for multidirectional differentiation and strong resistance to chemotherapy drugs.

Result Analysis
Print
Save
E-mail