1.Clinical features of recompensation in autoimmune hepatitis-related decompensated cirrhosis and related predictive factors
Xiaolong LU ; Lin HAN ; Huan XIE ; Lilong YAN ; Xuemei MA ; Dongyan LIU ; Xun LI ; Qingsheng LIANG ; Zhengsheng ZOU ; Caizhe GU ; Ying SUN
Journal of Clinical Hepatology 2025;41(9):1808-1817
ObjectiveTo investigate the clinical features and outcomes of recompensation in patients with autoimmune hepatitis (AIH)-related decompensated cirrhosis, to identify independent predictive factors, and to construct a nomogram prediction model for the probability of recompensation. MethodsA retrospective cohort study was conducted among the adult patients with AIH-related decompensated cirrhosis who were admitted to The Fifth Medical Center of PLA General Hospital from January 2015 to August 2023 (n=211). The primary endpoint was achievement of recompensation, and the secondary endpoint was liver-related death or liver transplantation. According to the outcome of the patients at the end of the follow-up, the patients were divided into the recompensation group (n=16) and the persistent decompensation group(n=150).The independent-samples t test was used for comparison of normally distributed continuous data with homogeneity of variance, and the Mann-Whitney U rank sum test was used for comparison of non-normally distributed continuous data with heterogeneity of variance; the chi-square test or the Fisher’s exact test was used for comparison of categorical data between groups; the Kaplan-Meier method was used for survival analysis; the Cox proportional-hazards regression model was used to identify independent predictive factors, and a nomogram model was constructed and validated. ResultsA total of 211 patients were enrolled, with a median age of 55.0 years and a median follow-up time of 44.0 months, and female patients accounted for 87.2%. Among the 211 patients, 61 (with a cumulative proportion of 35.5%) achieved recompensation. Compared with the persistent decompensation group, the recompensation group had significantly higher white blood cell count, platelet count (PLT), total bilirubin (TBil), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid, prothrombin time, international normalized ratio (INR), SMA positive rate, Model for End-Stage Liver Disease (MELD) score, Child-Pugh score, and rate of use of glucocorticoids (all P0.05), as well as significantly lower age at baseline, number of complications, and death/liver transplantation rate (all P0.05). At 3 and 12 months after treatment, the recompensation group had continuous improvements in AST, TBil, INR, IgG, MELD score, and Child-Pugh score, which were significantly lower than the values in the persistent decompensation group (all P0.05), alongside with continuous increases in PLT and albumin, which were significantly higher than the values in the persistent decompensation group (P0.05). The multivariate Cox regression analysis showed that baseline ALT (hazard ratio [HR]=1.067, 95% confidence interval [CI]: 1.010 — 1.127, P=0.021), IgG (HR=0.463,95%CI:0.258 — 0.833, P=0.010), SMA positivity (HR=3.122,95%CI:1.768 — 5.515, P0.001), and glucocorticoid therapy (HR=20.651,95%CI:8.744 — 48.770, P0.001) were independent predictive factors for recompensation, and the nomogram model based on these predictive factors showed excellent predictive performance (C-index=0.87,95%CI:0.84 — 0.90). ConclusionAchieving recompensation significantly improves clinical outcomes in patients with AIH-related decompensated cirrhosis. Baseline SMA positivity, a high level of ALT, a low level of IgG, and corticosteroid therapy are independent predictive factors for recompensation. The predictive model constructed based on these factors can provide a basis for decision-making in individualized clinical management.
2.Essential tremor plus affects disease prognosis: A longitudinal study.
Runcheng HE ; Mingqiang LI ; Xun ZHOU ; Lanqing LIU ; Zhenhua LIU ; Qian XU ; Jifeng GUO ; Xinxiang YAN ; Chunyu WANG ; Hainan ZHANG ; Irene X Y WU ; Beisha TANG ; Sheng ZENG ; Qiying SUN
Chinese Medical Journal 2025;138(1):117-119
3.Expression of CD19/CD73 in Chronic Lymphocytic Leukemia and Its Correlation with Clinical Features.
Yan-Yu WANG ; Lan LIU ; Yu-Jie ZHAO ; Geng-Hui SHI ; Xun MIN
Journal of Experimental Hematology 2025;33(5):1274-1278
OBJECTIVE:
To investigate the expression of CD19/CD73 in chronic lymphocytic leukemia (CLL) and its correlation with clinical features.
METHODS:
The clinical data of 60 CLL patients and 40 healthy volunteers (control group) from January 2022 to November 2023 were retrospectively analyzed. The levels of CD19 and CD73 in peripheral blood of CLL patients were measured by flow cytometry. Kaplan-Meier method was used for survival analysis.
RESULTS:
The hemoglobin (Hb) and CD19/CD73 levels in CLL group were significantly lower than those in control group, while CD19, CD73 and β2-MG were significantly higher (all P <0.001). According to ROC curve analysis, the AUC value of CD19/CD73 for CLL diagnosis was 0.980 (95%CI : 0.949-1.000, P <0.05), the specificity was 92.50%, and the sensitivity was 98.30%. The CD19/CD73 level of CLL patients with splenomegaly was significantly lower than those without splenomegaly (P <0.01). There was no significant correlation between CD19/CD73 and Hb in CLL patients ( r =0.056, P >0.05). CD19/CD73 was positively correlated with β2-MG ( r =0.837, 95%CI : 0.740 2-0.899 6, P <0.01). According to the median value (12.84) of CD19/CD73, the patients were divided into high and low expression groups. Kaplan-Meier survival analysis showed that the overall survival rate and progression-free survival rate at 18th month in the low expression group were 87.08% and 93.25%, while those in the high expression group were 96.41% and 99.90%, respectively (both P <0.05).
CONCLUSION
The level of CD19/CD73 is low in CLL patients, which can be used as an auxiliary index for clinical diagnosis of CLL. CD19/CD73 is closely related to splenomegaly in CLL patients. Low expression of CD19/CD73 predicts poor prognosis.
Humans
;
Leukemia, Lymphocytic, Chronic, B-Cell/metabolism*
;
5'-Nucleotidase/metabolism*
;
Antigens, CD19/metabolism*
;
Retrospective Studies
;
Male
;
Female
;
Prognosis
;
Middle Aged
;
Aged
;
Adult
;
GPI-Linked Proteins
4.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
5.Ultrasonic quantitative measurement of hepatorenal index for diagnosing non-alcoholic fatty liver disease in children
Xia WU ; Xun WANG ; Yan TAN ; Jun CHEN ; Hao LIU
Chinese Journal of Interventional Imaging and Therapy 2024;21(2):89-93
Objective To explore the value of ultrasonic quantitative measurement of hepatorenal index(HRI)for diagnosing non-alcoholic fatty liver disease(NAFLD)in children.Methods Abdominal ultrasound and upper abdominal MRI data of 70 obese children were retrospectively analyzed.ROI with different sizes and shapes of liver and right kidney were delineated on longitudinal and transverse ultrasound images,respectively,and the echo intensity of ROIs were measured to obtain HRIsmall ROI on longitudinal section,HRIsmall ROI on transverse section,HRIlarge ROI on longitudinal section and HRIlarge ROI on transverse section,i.e.HRI1,HRI2,HRI3,HRI4,while the gray,skewness and kurtosis of liver ultrasound image were recorded.Liver proton density fat fraction(PDFF)were measured based on MRI,and NAFLD was diagnoses taken PDFF≥6%as standard.The correlations of HRI with PDFF and liver ultrasound image related parameters were analyzed.Taken MRI as the standard,receiver operating characteristic(ROC)curve was drawn to evaluate the diagnostic efficacy of HRI for NAFLD.Multivariate logistic regression analysis was performed taken age,sex,body mass index(BMI)percentile,HRI3 and liver ultrasound image related parameters as independent variables and MRI diagnosis of NAFLD as dependent variable to screen the predictors of MRI diagnosis of NAFLD.Results HRI1,HRI2,HRI3 and HRI4 obtained with ultrasound was 1.89±0.52,1.88±0.55,1.97±0.51 and 1.92±0.55,respectively.PDFF obtained with MRI was(12.53±3.14)%,and diagnosed NAFLD in 34 cases.HRI and PDFF had moderate positive correlation(r=0.51-0.61,all P<0.01).The correlation between HRI3 and PDFF was the strongest(r=0.61),and HRI3 was weakly correlated with liver gray3(r=-0.270,P=0.020),with area under the curve(AUC)for diagnosing NAFLD of 0.93(P<0.01).BMI percentile(OR=1.06),HRI3(OR=34.20)and liver gray3(OR=0.79)were all predictive factors for MRI diagnosis of NAFLD.Conclusion Ultrasonic quantitative measurement of HRI had high clinical value for diagnosing NAFLD in children.
6.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement.
Liyuan CHEN ; Huajie YU ; Zixin LI ; Yu WANG ; Shanshan JIN ; Min YU ; Lisha ZHU ; Chengye DING ; Xiaolan WU ; Tianhao WU ; Chunlei XUN ; Yanheng ZHOU ; Danqing HE ; Yan LIU
International Journal of Oral Science 2024;16(1):3-3
Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
Animals
;
Humans
;
Mice
;
Rats
;
Bone Remodeling/physiology*
;
Caspase 1
;
Periodontal Ligament
;
Pyroptosis
;
Tooth Movement Techniques
7.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
8.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
9.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
10.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.

Result Analysis
Print
Save
E-mail