1.Traditional Chinese Medicine Treats Acute Lung Injury by Modulating NLRP3 Inflammasome: A Review
Jiaojiao MENG ; Lei LIU ; Yuqi FU ; Hui SUN ; Guangli YAN ; Ling KONG ; Ying HAN ; Xijun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):292-301
Acute lung injury (ALI) is one of the most common and critical diseases in clinical practice, with extremely high morbidity and mortality, seriously threatening human life and health. The pathogenesis of ALI is complex, in which the inflammatory response is a key factor. Studies have shown that NOD-like receptor protein 3 (NLRP3) inflammasomes are involved in ALI through mechanisms such as inflammation induction, increased microvascular permeability, recruitment of neutrophils, oxidative stress, and pyroptosis, playing a key role in the occurrence and progression of ALI. Therefore, regulating NLRP3 inflammasomes and inhibiting the release of inflammatory factors can alleviate the damage in ALI. At present, ALI is mainly treated by mechanical ventilation and oxygen therapy, which have problems such as high costs and poor prognosis. In recent years, studies have shown that traditional Chinese medicine (TCM) can reduce the inflammatory response and the occurrence of oxidative stress and pyroptosis by regulating the NLRP3 inflammasome, thus alleviating the damage and decreasing the mortality of ALI. Based on the relevant literature in recent years, this article reviews the research progress in TCM treatment of ALI by regulating NLRP3 inflammasomes, discusses how NLRP3 inflammasomes participate in ALI, and summarizes the active ingredients, extracts, and compound prescriptions of TCM that regulate NLRP3 inflammasomes, aiming to provide new ideas for the clinical treatment of ALI and the development of relevant drugs.
2.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
3.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
4.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
5.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
6.Identification and Potential Clinical Utility of Common Genetic Variants in Gestational Diabetes among Chinese Pregnant Women
Claudia Ha-ting TAM ; Ying WANG ; Chi Chiu WANG ; Lai Yuk YUEN ; Cadmon King-poo LIM ; Junhong LENG ; Ling WU ; Alex Chi-wai NG ; Yong HOU ; Kit Ying TSOI ; Hui WANG ; Risa OZAKI ; Albert Martin LI ; Qingqing WANG ; Juliana Chung-ngor CHAN ; Yan Chou YE ; Wing Hung TAM ; Xilin YANG ; Ronald Ching-wan MA
Diabetes & Metabolism Journal 2025;49(1):128-143
Background:
The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications.
Methods:
We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants.
Results:
Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals.
Conclusion
Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.
7.Research progress in chemical constituents and pharmacological activities of Abelmoschi Corolla and prediction of its quality markers.
Shi-Han GUAN ; Chang LIU ; Xiao-Tong YAN ; Jin-Wei HAN ; Feng-Ting YIN ; Hui SUN ; Guang-Li YAN ; Ling KONG ; Ying HAN ; Xi-Jun WANG
China Journal of Chinese Materia Medica 2025;50(4):908-921
Abelmoschi Corolla, the dried corolla of Abelmoschus manihot, has anti-inflammatory, antioxidant, and anti-fibrosis activities. Its chemical constituents mainly include flavonoids, organic acids, steroids, and polysaccharides. This study reviewed the research progress in the chemical constituents and pharmacological activities of Abelmoschi Corolla in recent 20 years. According to the concept of quality marker(Q-marker), the Q-markers of Abelmoschi Corolla were predicted from plant phylogeny, chemical constituent specificity, traditional efficacy, chemical constituent measurability, and absorbed constituents. The primary Q-markers for Abelmoschi Corolla were anticipated to include quercetin-3'-O-β-D-glucopyranoside, gossypetin-8-O-β-D-glucuronide, isoquercetin, myricetin,quercetin, and hyperoside, with the aim of providing reference data for improving the quality evaluation system of Abelmoschi Corolla.
Abelmoschus/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Flowers/chemistry*
;
Humans
;
Animals
;
Quality Control
;
Flavonoids/chemistry*
8.Berberine promotes expression of AQP4 in astrocytes by regulating production of miR-383-5p in HepG2 cell-derived exosomes under insulin resistance.
Xue-Ling LIN ; Ying LI ; Meng-Qing GUO ; Yan-Jun ZHANG ; Qing-Sheng YIN ; Peng-Wei ZHUANG
China Journal of Chinese Materia Medica 2025;50(3):768-775
This study aims to explore the role and mechanism of berberine in promoting the expression of aquaporin 4(AQP4) in astrocytes by regulating the expression of miR-383-5p in HepG2 cell-derived exosomes under insulin resistance(IR). The IR-HepG2 cell model was established with 1×10~(-6) mol·L~(-1) insulin. With metformin as the positive control, the safe concentrations of berberine and metformin were screened by cell counting kit-8(CCK-8) and lactate dehydrogenase(LDH) leakage assays, and the effect of berberine on the IR of HepG2 cells was evaluated by glucose consumption. NanoSight was used to measure the particle size and concentration of exosomes secreted by HepG2 cells in each group. HepG2 cell-derived exosomes in each group were incubated with astrocytes for 24 h, and the protein and mRNA levels of AQP4 in HA1800 cells were determined by Western blot and qRT-PCR, respectively. qRT-PCR was performed to determine the expression of miR-383-5p in HepG2 cell-derived exosomes and HA1800 cells after co-incubation. Western blotting was employed to determine the expression levels of miRNAs and proteins associated with exosome production and release in HepG2 cells. The results showed that 10 μmol·L~(-1) berberine and 1 mmol·L~(-1) metformin significantly alleviated the IR of HepG2 cells and reduced the concentration of exosomes in HepG2 cells. The exosomes of HepG2 cells treated with berberine and metformin significantly up-regulated the protein and mRNA levels of AQP4 in HA1800 cells. The mRNA level of miR-383-5p in HepG2 cell exosomes and HA1800 cells co-incubated with berberine and metformin decreased significantly. The intervention with berberine and metformin significantly down-regulated the expression of proteins associated with the production of miRNAs(Dicer, Drosha) as well as the production(Alix, Vps4A) and release(Rab35, VAMP3) of exosomes in IR-HepG2 cells. In conclusion, berberine can promote the expression of AQP4 in astrocytes by inhibiting the production and release of miR-383-5p in HepG2-derived exosomes under IR.
Humans
;
MicroRNAs/metabolism*
;
Berberine/pharmacology*
;
Hep G2 Cells
;
Exosomes/genetics*
;
Aquaporin 4/metabolism*
;
Insulin Resistance
;
Astrocytes/drug effects*
9.Pharmacokinetics of Jinlingzi San and its single medicines in rats by LC-MS/MS.
Nan HU ; Yan-Bin MENG ; Si-Yu SHAN ; Shuang-Shuang ZHENG ; Ying-Han WANG ; Lan WANG ; Yu-Ling LIU
China Journal of Chinese Materia Medica 2025;50(5):1385-1391
This study aims to investigate the scientificity and efficacy of the compatibility of Jinlingzi San from pharmacokinetics. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was utilized to determine the plasma concentrations of the active components: toosendanin, tetrahydropalmatine A, and tetrahydropalmatine B at various time points following the gavage of Jinlingzi San and its single medicines in rats. Subsequently, WinNonlin was employed to calculate pertinent pharmacokinetic parameters. The pharmacokinetic parameters in rat plasma were compared between the single medicines and the compound formula of Jinlingzi San. It was discovered that the area under the curve(AUC_(all)) and peak concentrations(C_(max)) of tetrahydropalmatine A, and tetrahydropalmatine B were significantly elevated in the compound formula group compared with the single medicine groups. Conversely, the AUC_(all )and C_(max) of toosendanin notably decreased. Furthermore, the compound formula group had longer mean residence time(MRT) and lower apparent clearance(CL/F) of all three active ingredients than the single medicine groups(P<0.05). These findings indicated that Jinlingzi San enhanced the absorption of tetrahydropalmatine A and tetrahydropalmatine B in vivo, facilitating their pharmacological actions. Concurrently, it inhibited the absorption of toosendanin, thereby preventing potential toxic reactions. Moreover, the compatibility prolonged the residence time of the active ingredients in the body. This study provides a reference for exploring the compatibility rationality of Jinlingzi San.
Animals
;
Rats
;
Tandem Mass Spectrometry/methods*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, Liquid/methods*
;
Berberine Alkaloids/blood*
;
Liquid Chromatography-Mass Spectrometry
10.Research advances in mechanism of salvianolic acid B in treating coronary heart disease.
Hong-Ming CAO ; Hui SUN ; Chang LIU ; Guang-Li YAN ; Ling KONG ; Ying HAN ; Xi-Jun WANG
China Journal of Chinese Materia Medica 2025;50(6):1449-1457
Coronary heart disease is a cardiovascular disease that affects coronary arteries. It presents high incidence and high mortality worldwide, bringing a serious threat to human health and quality of life. Salviae Miltiorrhizae Radix et Rhizoma derived from Salvia miltiorrhiza is widely used in the treatment of cardiovascular diseases, such as coronary heart disease. Salvianolic acid B is an active component in Salviae Miltiorrhizae Radix et Rhizoma extracts, and studies have shown that it has anti-inflammatory, antioxidant, apoptosis-and autophagy-regulating, anti-fibrosis, and metabolism-modulating effects. This article reviews the research progress regarding the therapeutic effect of salvianolic acid B on coronary heart disease in the recent decade. It elaborates on the role and mechanism of salvianolic acid B in treating coronary heart disease from multiple perspectives, such as the inhibition of thrombosis, improvement of blood circulation, reduction of myocardial cell injury, and inhibition of cardiac remodeling. This article provides a theoretical basis for the application of Chinese medicinal materials and TCM prescriptions containing salvianolic acid B in the treatment of coronary heart disease.
Humans
;
Benzofurans/administration & dosage*
;
Coronary Disease/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Salvia miltiorrhiza/chemistry*
;
Animals
;
Depsides

Result Analysis
Print
Save
E-mail