1.Investigation on the mechanisms of Colquhounia Root Tablets in reversing vascular endothelial cell dysfunction of rheumatoid arthritis via modulating NOD2/SMAD3/VEGFA signaling axis
Bing-bing CAI ; Ya-wen CHEN ; Tao LI ; Yuan ZENG ; Yan-qiong ZHANG ; Na LIN ; Xia MAO ; Ya LIN
Acta Pharmaceutica Sinica 2025;60(2):397-407
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation, joint destruction, and functional impairment. Angiogenesis plays a key role in the pathological progression of RA with dysfunction of endothelial cells to promote synovial inflammation, sustain pannus formation, subsequently leading to joint damage. Colquhounia Root Tablets (CRT), a Chinese patent drug, has shown a satisfying clinical efficacy in treating RA, while the underlying mechanism by which CRT inhibits RA-associated angiogenesis remains unclear. In this study, we applied a research approach combining transcriptomic data analysis, bio-network mapping, and
2.Pharmacodynamic Substances and Mechanisms of Da Chengqitang in Treating Stroke: A Review
Yizhi YAN ; Xinyi LIU ; Yang DUAN ; Miaoqing LONG ; Chaoya LI ; Qiang LI ; Yi'an CHEN ; Shasha YANG ; Yue ZHANG ; Peng ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):297-306
Stroke is the main cause of death and disability among adults in China and is characterized by high incidence, disability, mortality, and recurrence rates. The combination of traditional Chinese and Western medicine has great potential in treating stroke and its sequelae. The classic traditional Chinese medicine prescription Da Chengqitang (DCQT) has a long history and proven efficacy in treating stroke. Clinically, DCQT is often used to treat stroke and its sequelae. However, the number and quality of clinical trials of DCQT in treating stroke need to be improved. Because of the insufficient basic research, the active ingredients and multi-target mechanism of action of DCQT remain unclear. Our research group has previously confirmed that DCQT can effectively reverse neurological damage, reduce iron deposition, and downregulate the levels of pro-inflammatory cytokines in the rat model of hemorrhagic stroke. The treatment mechanism is related to the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway and p38 mitogen-activated protein kinase (MAPK) signaling-mediated microglia activation. To clarify the pharmacodynamic basis and anti-stroke mechanism of DCQT, this article reviews the research progress in the treatment of stroke with DCQT in terms of clinical trials, pharmacodynamic material basis, safety evaluation, and mechanisms of absorbed components. This article summarizes 45 major phytochemical components of DCQT, 11 of which are currently confirmed absorbed components. Among them, emodin, rhein, chrysophanol, aloe-emodin, synephrine, hesperidin, naringin, magnolol, and honokiol can be used as quality markers (Q-markers) of DCQT. The mechanism of DCQT in treating stroke is complex, involving regulation of inflammatory responses, neuronal damage, oxidative stress, blood-brain barrier, brain-derived neurotrophic factor, and anti-platelet aggregation. This article helps to deeply understand the pharmacodynamic basis and mechanism of DCQT in treating stroke and provides a theoretical basis for the clinical application of DCQT in treating stroke and the development of stroke drugs.
3.Analysis of the standardization and influential factors in the prevention and treatment of glucocorticoid-induced osteoporosis with drugs
Wenshuo JIANG ; Chen LIU ; Yan ZENG
China Pharmacy 2025;36(8):991-995
OBJECTIVE To analyze the standardization and influential factors medication use for the prevention and treatment of glucocorticoid-induced osteoporosis (GIOP). METHODS The data of inpatients diagnosed as rheumatic immune diseases in our hospital from January 1, 2022, to December 31, 2023, who required long-term use of glucocorticoids, were collected to analyze the risk stratification for GIOP-related fractures and the utilization of prevention and treatment drug in patients. Univariate analysis and Logistic stepwise regression analysis were employed to screen the factors influencing the standardization of prevention and treatment drug use in patients. RESULTS Among 354 patients, 148 patients (41.81%) had a low risk of osteoporotic fractures, 103 patients (29.10%) had a moderate risk, and 103 patients (29.10%) had a high risk. The top three drugs used in the prevention and treatment of GIOP were calcium supplements (78.81%), vitamin D preparations (74.01%), and anti-osteoporosis drugs (21.19%). A total of 133 patients (37.57%) used the drugs for GIOP prevention and treatment in a standardized manner. The standardization rate of prevention and treatment in patients with low fracture risk was significantly higher than those with high and moderate fracture risk, and the standardization rate in patients with high fracture risk was significantly higher than those with moderate fracture risk (P<0.05). Besides, the univariate analysis showed that low fracture risk served as a prevention factor for the standardized use of prevention and treatment drugs for GIOP, while moderate fracture risk, smoking or drinking, the occurrence of adverse drug reactions, and having an educational level below junior college were risk factors for the normative use of GIOP prevention and treatment drug (P<0.05). Logistic stepwise regression analysis showed that patients with low and moderate fracture risk, a history of smoking or drinking, and adverse drug reactions to anti-osteoporosis drugs had a lower standardization rate of prevention and treatment; patients who visited tertiary hospital for the past month and had a longer duration of glucocorticoid use had a higher standardization rate of prevention and treatment (P<0.05). CONCLUSIONS The standardized rate of prevention and treatment drugs used for GIOP in our hospital is relatively low. Patients with moderate to high fracture risk, a history of smoking or drinking, and those who experience adverse drug reactions after taking anti-osteoporosis drugs have lower rates of standardized prevention and treatment. Conversely, patients who sought treatment at tertiary hospital for the past month and had a longer duration of glucocorticoid had higher rates of standardized prevention and treatment.
4.Biomechanical effects of postural and cognitive loads on trunk of workers performing assembly tasks at hand functional height
Huishuan WU ; Yu JIN ; Yan LIU ; Siyi ZENG ; Cunwen QIAN ; Kezhi JIN
Journal of Environmental and Occupational Medicine 2025;42(4):392-399
Background The neck, shoulders, and lower back are the primary affected areas of work-related musculoskeletal disorders. In manual tasks, combinations of hand functional height (defined as working height below the waist), awkward postures, and cognitive load are common risk factors. However, there is limited literature documenting how these factors specifically alter biomechanical load on the neck, shoulders, and lower back when working at hand functional height. Objective To explore quantitative differences in biomechanical load on the neck, shoulders, and lower back of workers performing manual tasks at hand functional height under different postures and cognitive load combinations. Methods A 3x2 within-subject design was implemented, with three postures (squat, kneeling, and stoop) and two levels of cognitive load (with cognitive load induced by a 2back task and without cognitive load). Ten male university students were recruited to perform a predetermined assembly task (a sequence of loosening and tightening screws) at hand functional height. Surface electromyography (sEMG) and 3D motion capture system were employed to assess the participants’ trunk biomechanical load in executing the tasks. Additionally, subjective perception, including fatigue, muscle pain, and cognitive load, were evaluated using scales. Results Significant variations in biomechanical load were observed across the three postures (P<0.05). The stoop posture exhibited the lowest muscle activation in most target muscles, except for the sternocleidomastoid, and showed the fastest decline in instantaneous median frequency (IMF) of the erector spinae, with a rate of (-0.050±0.008) Hz per unit time (0.128 s), and the greatest trunk flexion angle (35.14°±4.40°). Performing the task by squatting resulted in the highest muscle activation, especially in the upper trapezius, where maximum voluntary contraction percentage reached 20.07%±1.26%. In addition, the squatting posture also resulted in larger joint angles in the sagittal plane for the neck (−7.03°±2.70°), shoulders (60.20°±7.89°), and lower back (34.42°±4.20°). The kneeling posture showed intermediate muscle activation, the slowest IMF decline for the erector spinae in the lower back (−0.005±0.008) Hz per unit time (0.128s), and the joint angles were closest to neutral. The task performance results were also superior in the kneeling posture. Regarding cognitive load, no significant differences were found for most biomechanical indicators, except for subjective cognitive load scores, neck flexion, and shoulder external rotation angles. Conclusion In assembly tasks performed at hand functional height, kneeling results in moderate biomechanical load on the neck, shoulders, and lower back while also improves task performance compared to squatting and forward bending. Additionally, no significant effects of cognitive load under the 2back condition on biomechanical load are observed.
5.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female
6.Buyang Huanwu Decoction promotes angiogenesis after oxygen-glucose deprivation/reoxygenation injury of bEnd.3 cells by regulating YAP1/HIF-1α signaling pathway via caveolin-1.
Bo-Wei CHEN ; Yin OUYANG ; Fan-Zuo ZENG ; Ying-Fei LIU ; Feng-Ming TIAN ; Ya-Qian XU ; Jian YI ; Bai-Yan LIU
China Journal of Chinese Materia Medica 2025;50(14):3847-3856
This study aims to explore the mechanism of Buyang Huanwu Decoction(BHD) in promoting angiogenesis after oxygen-glucose deprivation/reoxygenation(OGD/R) of mouse brain microvascular endothelial cell line(brain-derived Endothelial cells.3, bEnd.3) based on the caveolin-1(Cav1)/Yes-associated protein 1(YAP1)/hypoxia-inducible factor-1α(HIF-1α) signaling pathway. Ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to analyze the blood components of BHD. The cell counting kit-8(CCK-8) method was used to detect the optimal intervention concentration of drug-containing serum of BHD after OGD/R injury of bEnd.3. The lentiviral transfection method was used to construct a Cav1 silent stable strain, and Western blot and polymerase chain reaction(PCR) methods were used to verify the silencing efficiency. The control bEnd.3 cells were divided into a normal group(sh-NC control group), an OGD/R model + blank serum group(sh-NC OGD/R group), and an OGD/R model + drug-containing serum group(sh-NC BHD group). Cav1 silent cells were divided into an OGD/R model + blank serum group(sh-Cav1 OGD/R group) and an OGD/R model + drug-containing serum group(sh-Cav1 BHD group). The cell survival rate was detected by the CCK-8 method. The cell migration ability was detected by a cell migration assay. The lumen formation ability was detected by an angiogenesis assay. The apoptosis rate was detected by flow cytometry, and the expression of YAP1/HIF-1α signaling pathway-related proteins in each group was detected by Western blot. Finally, co-immunoprecipitation was used to verify the interaction between YAP1 and HIF-1α. The results showed astragaloside Ⅳ, formononetin, ferulic acid, and albiflorin in BHD can all enter the blood. The drug-containing serum of BHD at a mass fraction of 10% may be the optimal intervention concentration for OGD/R-induced injury of bEnd.3 cells. Compared with the sh-NC control group, the sh-NC OGD/R group showed significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, significantly increased cell apoptotic rate, significantly lowered phosphorylation level of YAP1 at S127 site, and significantly elevated nuclear displacement level of YAP1 and protein expression of HIF-1α, vascular endothelial growth factor(VEGF), and vascular endothelial growth factor receptor 2(VEGFR2). Compared with the same type of OGD/R group, the sh-NC BHD group and sh-Cav1 BHD group had significantly increased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly decreased cell apoptotic rate, a further decreased phosphorylation level of YAP1 at S127 site, and significantly increased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. Compared with the sh-NC OGD/R group, the sh-Cav1 OGD/R group exhibited significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly increased cell apoptotic rate, a significantly increased phosphorylation level of YAP1 at S127 site, and significantly decreased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. Compared with the sh-NC BHD group, the sh-Cav1 BHD group showed significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly increased cell apoptotic rate, a significantly increased phosphorylation level of YAP1 at the S127 site, and significantly decreased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. YAP1 protein was present in the protein complex precipitated by the HIF-1α antibody, and HIF-1α protein was also present in the protein complex precipitated by the YAP1 antibody. The results confirmed that the drug-containing serum of BHD can increase the activity of YAP1/HIF-1α pathway in bEnd.3 cells damaged by OGD/R through Cav1 and promote angiogenesis in vitro.
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Signal Transduction/drug effects*
;
Glucose/metabolism*
;
Caveolin 1/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
YAP-Signaling Proteins
;
Oxygen/metabolism*
;
Endothelial Cells/metabolism*
;
Cell Line
;
Adaptor Proteins, Signal Transducing/genetics*
;
Neovascularization, Physiologic/drug effects*
;
Cell Hypoxia/drug effects*
;
Angiogenesis
7.Immune function regulation and tumor-suppressive effects of Shenqi Erpi Granules on S_(180) tumor-bearing mice.
Xiong-Wei ZHANG ; Yan-Ning JIANG ; Hu QI ; Bin LI ; Yuan-Lin GAO ; Ze-Yang ZHANG ; Jian-An FENG ; Xi LI ; Nan ZENG
China Journal of Chinese Materia Medica 2025;50(13):3753-3764
This study aims to establish the S_(180) tumor-bearing mice model, and to investigate the influence of Shenqi Erpi Granules(SQEPG) on immune function, as well as the drug's tumor-suppressive effect and mechanism. SPF grade KM mice(half male and half female) were randomly divided into 6 groups: a control group, a model group, a cyclophosphamide group(50 mg·kg~(-1)), as well as SQEPG groups in low-, medium-, and high-dose(5.25, 10.5, 21 g·kg~(-1)). The control group and the model group were given distilled water, and the other 4 groups were given the corresponding drugs by gavage. The administration continued for 10 days before the mice were sacrificed. The antitumor and immune regulation effects of SQEPG were evaluated. The effect of SQEPG on delayed type hypersensitivity reaction(DTH), carbon clearance index, and serum hemolysin antibody level was observed to reflect the effect on the immune function of tumor-bearing mice. Tumor weight was recorded to calculate the tumor suppression rate and the immune organ index. Hematoxylin-eosin(HE) staining was used to detect morphological changes in tumor tissues. Flow cytometry was employed to detect the percentage of CD4~+ and CD8~+ T-cells in the spleen tissues and the tumor tissue apoptosis levels. Immunohistochemistry was conducted to detect the KI67 protein expression level of tumor tissues. ELISA resorted to the detection of the following expression levels in tumor tissues: tumor necrosis factor-α(TNF-α), interleukin-2(IL-2), interferon-γ(IFN-γ). Western blot was performed to detect the expression levels of caspase-3, B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cyclin-dependent kinases 4(CDK4), G_1/S-specific cyclin D1(cyclin D1), and vascular endothelial growth factor A(VEGFA). The results showed that, compared with the model group, the SQEPG could increase the swelling of the auricle of the tumor-bearing mice; significantly increase the phagocytic index of carbon granule contour(P<0.05 or P<0.01), and the middle dose of SQEPG could significantly increase the antibody level of hemolysin(P<0.05); different doses of SQEPG significantly inhibit the growth of the tumor, and decrease the mass of the tumor tissues(P<0.05 or P<0.01); the low dose of SQEPG significantly decreased spleen index(P<0.05), low and high doses of SQEPG increased thymus index, while medium doses of SQEPG decreased thymus index. High doses of SQEPG significantly elevated the levels of CD4~+ and CD8~+ T-cells in the spleens of the homozygous mice(P<0.01 or P<0.001), and increased the apoptosis rate of the cells of the tumor tissues(P<0.05); Meanwhile, high-dose SQEPG elevated the levels of immunity factors such as IL-2, IFN-γ and TNF-α in the serum of tumor-bearing mice(P<0.01); medium-and high-dose SQEPG significantly lowered the rate of positive expression of KI67 protein in tumor tissues(P<0.01). Compared with the model group, high-dose SQEPG significantly up-regulated the expression of caspase-3 and Bax proteins in tumor tissues(P<0.05), and significantly down-regulated the expression of CDK4, cyclin D1, and VEGFA proteins(P<0.05 or P<0.01). In conclusion, SQEPG has the effect of improving immune function and inhibiting tumor growth in tumor-bearing mice. Its mechanism of tumor-suppressive effects may be related to apoptosis promotion, cell cycle progression block, and tumor cell proliferation inhibition.
Animals
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Female
;
Apoptosis/drug effects*
;
Sarcoma 180/genetics*
;
Humans
8.Early effectiveness of arthroscopic modified tri-anchor double-pulley suture-bridge technique in repairing medium-sized supraspinatus tendon tears.
Peiguan HUANG ; Xiaoxu WANG ; Bei WANG ; Guanghua TAN ; Liang HONG ; Fang WANG ; Zhi ZENG ; Saiyun LEI ; Mingjun QIU ; Huyong YAN ; Chunrong HE
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):708-714
OBJECTIVE:
To describe a novel arthroscopic technique of modified tri-anchor double-pulley suture-bridge in repairing medium-sized supraspinatus tendon tears and evaluate the early effectiveness.
METHODS:
Between June 2021 and January 2024, 26 patients with medium-sized supraspinatus tendon tears who underwent arthroscopic modified tri-anchor double-pulley suture-bridge repair and met the selective criteria were included. There were 11 males and 15 females with an average age of 61.4 years (range, 43-74 years). Five patients had a significant history of trauma, while the remaining 21 patients had no apparent cause. The time from symptom onset to hospitalization was 3-25 months (mean, 7.9 months). The effectiveness was evaluated during follow-up, including the scores of University of California at Los Angeles (UCLA), American Shoulder and Elbow Surgeons (ASES), visual analogue scale (VAS), the range of forward flexion, abduction, external rotation, and internal rotation, and patient's satisfaction. Either MRI or ultrasound examination were used to evaluate structural integrity of the tendon.
RESULTS:
The operation time was 65-110 minutes (mean, 81.8 minutes). All patients were followed up 12-43 months (mean, 23.0 months). At 3 and 12 months after operation, the shoulder range of flexion, abduction, external rotation, and internal rotation, and the scores of VAS, UCLA, and ASES significantly improved when compared with those before operation ( P<0.05). The improvement was further observed at 12 months compared to 3 months ( P<0.05). At last follow-up, 13 patients were very satisfied with the effectiveness, 11 patients were satisfied, 1 was relatively satisfied, and 1 was dissatisfied. During follow-up, 15 patients underwent imaging examination and imaging reexamination showed that the re-tear rate of tendon was 6.6%(1/15). The remaining 11 patients refused imaging examination. Complications included partial anchor withdrawal in 1 case, shoulder stiffness in 5 cases, and mild pain in shoulder joint in 2 cases in physical activity or heavy physical activity.
CONCLUSION
Arthroscopic modified tri-anchor double-pulley suture-bridge technique is a novel surgical technique that uses double-loaded suture anchors as medial- and lateral-row anchors. In repairing medium-sized supraspinatus tendon tears, 6 sets of double-pulley suture-bridges can be created from one medial-row anchor; knotless medial-row can reduce re-tear rate of the tendon; good early effectiveness is obtained.
Humans
;
Female
;
Male
;
Middle Aged
;
Arthroscopy/methods*
;
Adult
;
Rotator Cuff Injuries/surgery*
;
Aged
;
Suture Techniques
;
Treatment Outcome
;
Suture Anchors
;
Rotator Cuff/surgery*
;
Range of Motion, Articular
;
Tendon Injuries/surgery*
;
Patient Satisfaction
9.Effectiveness of innervated medial plantar flap for reconstruction of soft tissue defects following foot tumor resection.
Wenchao ZHANG ; Luqi GUO ; Yan HAO ; Liangya WANG ; Chao ZHANG ; Yun WANG ; Jiuzuo HUANG ; Ang ZENG ; Xiao LONG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1086-1090
OBJECTIVE:
To evaluate the effectiveness of the innervated medial plantar flap for reconstructing soft tissue defects, particularly in the weight-bearing zone, after resection of foot tumors.
METHODS:
A retrospective analysis was conducted on 12 patients with malignant skin and soft tissue tumors of the foot treated between October 2023 and December 2024. The cohort included 8 males and 4 females, aged 42-67 years (mean, 57.5 years). Tumor types comprised malignant melanoma (5 cases), squamous cell carcinoma (4 cases), arsenical keratosis (2 cases), and tumor-induced osteomalacia (1 case). Soft tissue defects located in the heel weight-bearing region in 10 cases and non-weight-bearing ankle region in 2 cases, with defect sizes ranging from 4.0 cm×3.0 cm to 6.0 cm×4.0 cm. Preoperative photon-counting CT angiography (PC-CTA) was performed to assess the medial plantar artery and its perforators. All patients underwent radical tumor resection with confirmed negative margins. The resulting defects were reconstructed using a innervated medial plantar flap incorporating sensory branches of the medial plantar nerve. The flap donor site was covered with a split-thickness skin graft harvested from the ipsilateral inguinal region.
RESULTS:
The operation was successfully completed in all 12 patients. All flaps survived completely without vascular compromise, partial necrosis, or total loss. Incisions healed primarily without dehiscence or infection. Minor skin graft necrosis occurred at the donor site in 3 patients, which healed within 2-3 weeks with routine dressing changes. No donor site complication (e.g., tendon or nerve injury) occurred. Patients were followed up 2-16 months (mean, 10.3 months). At last follow-up, there was no tumor recurrence. Flaps exhibited good color and texture match with surrounding tissue, restored sensation, and all feet achieved normal weight-bearing activity.
CONCLUSION
The innervated medial plantar flap, precisely designed based on PC-CTA localization, provides reliable blood supply and effective sensory restoration. It is an ideal method for reconstructing soft tissue defects after foot tumor resection, especially in the heel weight-bearing region.
Humans
;
Male
;
Middle Aged
;
Female
;
Plastic Surgery Procedures/methods*
;
Adult
;
Aged
;
Retrospective Studies
;
Soft Tissue Neoplasms/surgery*
;
Surgical Flaps/blood supply*
;
Foot/surgery*
;
Skin Neoplasms/surgery*
;
Soft Tissue Injuries/surgery*
;
Carcinoma, Squamous Cell/surgery*
;
Treatment Outcome
;
Skin Transplantation/methods*
;
Melanoma/surgery*
10.Clinical application of three-dimensional printing technology combined with customized bone plate in the treatment of acetabulum fracture.
Yan-Chao ZANG ; Quan-Yong ZHAO ; Li YANG ; Jin-Zeng ZUO ; Wei QI ; Wei-Dong LIANG ; Jie XING
China Journal of Orthopaedics and Traumatology 2025;38(2):203-207
OBJECTIVE:
To explore the application value and clinical effect of 3D printing combined with customized bone plate in the treatment of acetabular fracture.
METHODS:
From June 2020 to June 2022, 11 patients with acetabular fractures underwent preoperative planning using 3D printing technology and were treated with customized bone plates including 8 males and 3 females, aged 25 to 66 years old. The fractures were classified according to Letournel-Judet:4 posterior wall fractures, 2 T-type fractures, 2 transverse posterior wall fractures, 2 double column fractures, and 1 anterior column with posterior semi-transverse fractures. The operative time, intraoperative blood loss, intraoperative fluoroscopy times, postoperative drainage volume, postoperative fracture healing time, and hip function score were recorded and analyzed.
RESULTS:
The operation time of 11 patients was 80 to 150 min, intraoperative blood volume was 150 to 700 ml, fluoroscopy frequency was 2 to 6, postoperative drainage flow was 60 to 195 ml, and the fracture healing time was 2.5 to 6.0 months. Fracture reduction was evaluated according to Matta score:anatomical reduction in 3 cases and satisfactory reduction in 8 cases. Eleven patients were followed up for 7 to 18 months. The hip Merle d'Aubigne function scores were excellent in 6 cases, good in 3 cases, fair in 1 case and poor in 1 case. Incision fat liquefaction occurred in 1 case and obturator nerve traction in 1 case.
CONCLUSION
The application of 3D printing technology combined with customized bone plates in the treatment of acetabular fracture is effective. In addition, the printed model can provide the operator with the results of the three-dimensional shape of the fracture, which is convenient for surgical reduction and effectively improves the efficiency of surgery.
Humans
;
Female
;
Male
;
Middle Aged
;
Acetabulum/surgery*
;
Printing, Three-Dimensional
;
Adult
;
Aged
;
Bone Plates
;
Fractures, Bone/surgery*
;
Fracture Fixation, Internal/methods*

Result Analysis
Print
Save
E-mail