1.Comparison of multiple machine learning models for predicting the survival of recipients after lung transplantation
Lingzhi SHI ; Yaling LIU ; Haoji YAN ; Zengwei YU ; Senlin HOU ; Mingzhao LIU ; Hang YANG ; Bo WU ; Dong TIAN ; Jingyu CHEN
Organ Transplantation 2025;16(2):264-271
Objective To compare the performance and efficacy of prognostic models constructed by different machine learning algorithms in predicting the survival period of lung transplantation (LTx) recipients. Methods Data from 483 recipients who underwent LTx were retrospectively collected. All recipients were divided into a training set and a validation set at a ratio of 7:3. The 24 collected variables were screened based on variable importance (VIMP). Prognostic models were constructed using random survival forest (RSF) and extreme gradient boosting tree (XGBoost). The performance of the models was evaluated using the integrated area under the curve (iAUC) and time-dependent area under the curve (tAUC). Results There were no significant statistical differences in the variables between the training set and the validation set. The top 15 variables ranked by VIMP were used for modeling and the length of stay in the intensive care unit (ICU) was determined as the most important factor. Compared with the XGBoost model, the RSF model demonstrated better performance in predicting the survival period of recipients (iAUC 0.773 vs. 0.723). The RSF model also showed better performance in predicting the 6-month survival period (tAUC 6 months 0.884 vs. 0.809, P = 0.009) and 1-year survival period (tAUC 1 year 0.896 vs. 0.825, P = 0.013) of recipients. Based on the prediction cut-off values of the two algorithms, LTx recipients were divided into high-risk and low-risk groups. The survival analysis results of both models showed that the survival rate of recipients in the high-risk group was significantly lower than that in the low-risk group (P<0.001). Conclusions Compared with XGBoost, the machine learning prognostic model developed based on the RSF algorithm may preferably predict the survival period of LTx recipients.
2.Mechanism of Modified Shaofu Zhuyutang in Antagonising Ectopic Endometrial Tissue Fibrosis Based on Cellular Pyroptosis Mediated by TRL4/NF-κB/NLPR3 Signaling Pathway
Zuoliang ZHANG ; Jiaxing WANG ; Wanrun WANG ; Xiangyu LIN ; Bin YUE ; Zhirui ZHANG ; Yinan WANG ; Yaling YANG ; Dongqing WEI ; Cancan HUANG ; Quansheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):19-28
ObjectiveTo investigate the mechanism of action of modified Shaofu Zhuyutang in antagonizing cellular pyroptosis and fibrosis in ectopic endometrial tissues of endometriosis through the Toll-like receptor 4/nuclear factor-κB/NOD-like receptor protein 3 (TRL4/NF-κB/NLPR3) signaling pathway. MethodsSeventy-two SPF-grade female SD rats were randomly divided into a sham-operated group (n = 12) and a modeling group (n = 60). The rats in the sham-operated group underwent a caesarean section, while the rats in the modeling group were used to establish an endometriosis model through the auto-transplantation method. After successful modeling, the animals were randomly divided into the model group, progesterone group (0.25 mg·kg-1), and modified Shaofu Zhuyutang low-, medium-, and high-dose groups (7.5, 15, 30 g·kg-1), with 12 animals in each group. After 4 weeks of drug administration, voluntary activity and heat pain latency were observed. The rats were sacrificed for tissue collection, and Masson staining were used to observe histopathological changes in the endometrial tissues. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of interleukin-18 (IL-18), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β). Immunohistochemistry (IHC) was used to detect the protein expression area of tumor necrosis factor-related factor 6 (TRAF6) and NLPR3 in the endometrial tissues. Immunofluorescence (IF) was used to detect the relative fluorescence intensity of Caspase-1 and gasdermin D (GSDMD) in the endometrial tissues. Western blot was employed to measure the relative expression of TRL4, myeloid differentiation factor 88 (MyD88), TRAF6, NF-κB p65, phosphorylated NF-κB p65 (p-NF-κB p65), and NLPR3 proteins in endometrial tissues. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of TRL4, MyD88, TRAF6, NF-κB, and NLPR3 in the endometrial tissues. ResultsCompared with the sham-operated group, rats in the model group showed reduced voluntary activity and shorter heat pain latency. Serum levels of IL-18, IL-1β, TNF-α, and TGF-β were elevated. The relative expression areas of TRAF6 and NLPR3 proteins were increased, and the relative fluorescence intensity of Caspase-1 and GSDMD was enhanced. The relative expression of TRL4, MyD88, TRAF6, NF-κB p65, p-NF-κB p65, and NLPR3 proteins, along with the expression of TRL4, MyD88, TRAF6, NF-κB, and NLPR3 mRNA, were significantly increased (P<0.01). Compared with the model group, rats in the progesterone group and the modified Shaofu Zhuyutang medium- and high-dose groups exhibited improved voluntary activity, longer heat pain latency, the fibrosis of endometrial tissue is alleviated. Serum levels of IL-18, IL-1β, TNF-α, and TGF-β were decreased. The relative expression areas of TRAF6 and NLPR3 proteins decreased, and the relative fluorescence intensity of Caspase-1 and GSDMD weakened. The relative expression of TRL4, MyD88, TRAF6, p-NF-κB p65, NLPR3 proteins, and TRL4, MyD88, TRAF6, NF-κB, and NLPR3 mRNA expression were reduced (P<0.05, P<0.01). ConclusionModified Shaofu Zhuyutang may play a therapeutic role in endometriosis by interfering with key proteins in the TRL4/NF-κB/NLPR3 signaling pathway, reducing NLRP3 inflammasome-induced cellular pyroptosis, antagonizing the fibrosis process in ectopic endometrial tissues, improving the inflammatory microenvironment in the pelvic cavity, and alleviating pain.
3.Mechanism of Modified Shaofu Zhuyutang in Treatment of Endometriosis Based on EGFR/PI3K/Akt Signaling Pathway
Yaling YANG ; Wanrun WANG ; Zuoliang ZHANG ; Xiangyu LIN ; Jiaxing WANG ; Cancan HUANG ; Xiujia JI ; Quansheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):29-38
ObjectiveTo observe the effects of modified Shaofu Zhuyutang on key proteins of the epidermal growth factor receptor (EGFR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in SD rats with endometriosis. MethodsAfter successful establishment of an endometriosis model in 60 female SD rats of SPF grade via the auto-transplantation method, the rats were randomly divided into a model group, modified Shaofu Zhuyutang high-, medium-, and low-dose groups, and a gestrinone group, with another 12 rats serving as a blank group. The blank and model groups were administered 10 mL·kg-1 normal saline, while the high-, medium-, and low-dose groups received 30, 15, and 7.5 g·kg-1 modified Shaofu Zhuyutang, respectively. The gestrinone group was administered 0.25 mg·kg-1 gestrinone suspension. After four weeks of treatment, uterine contractions were induced with 2 U of oxytocin, and the writhing response of rats was observed. After 24 h, the rats were euthanized, and the weight and volume of ectopic endometrial tissue were recorded. Hematoxylin-eosin (HE) staining was used to observe pathological changes in endometrial tissues, while the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay was used to evaluate the apoptosis rate of endometrial tissues. Immunofluorescence was used to detect the relative expression areas of the B-cell lymphoma-2 gene-associated promoter (Bad) and B-cell lymphoma-2 (Bcl-2) proteins in endometrial tissues. Serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), epidermal growth factor (EGF), and EGFR were measured by enzyme-linked immunosorbent assay (ELISA). The relative protein expression levels of EGFR, PI3K, phosphorylated PI3K (p-PI3K), Akt, and phosphorylated Akt (p-Akt) in endometrial tissues were analyzed by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression levels of EGFR, PI3K, and Akt. ResultsCompared with the blank group, the model group showed endometrial thickening, glandular and mesenchymal hyperplasia, a significant decrease in the relative expression area of Bad in ectopic endometrial tissues, a significant increase in the relative expression area of Bcl-2, and a significant reduction in the apoptosis rate as indicated by TUNEL staining. Serum levels of IL-1β, IL-6, TNF-α, EGF, and EGFR were significantly elevated (P<0.01). The relative protein expression levels of EGFR, PI3K, p-PI3K, Akt, and p-Akt, as well as the mRNA expression levels of EGFR, PI3K, and Akt, were also significantly increased (P<0.01). Compared with the model group, the high- and medium-dose groups of modified Shaofu Zhuyutang and the gestrinone group exhibited reduced glandular and mesenchymal hyperplasia to varying degrees, with dilated glandular lumens. The number of writhing responses was significantly reduced, the latency to writhing response was significantly prolonged, and the weight and volume of ectopic endometrial tissue were significantly decreased. The relative expression area of Bad in ectopic endometrial tissue was significantly increased, the relative expression area of Bcl-2 was significantly decreased, and the apoptosis rate was significantly elevated as shown by TUNEL staining. Serum levels of IL-1β, IL-6, TNF-α, EGF, and EGFR were significantly reduced, and the relative protein expression levels of EGFR, PI3K, p-PI3K, Akt, and p-Akt, as well as the mRNA expression levels of EGFR, PI3K, and Akt, were significantly decreased (P<0.05,P<0.01). ConclusionModified Shaofu Zhuyutang may exert therapeutic effects on endometriosis by interfering with key proteins of the EGFR/PI3K/Akt signaling pathway and inducing apoptosis in ectopic endometrial tissue.
4.Effect of Modified Shaofu Zhuyutang on Ferroptosis in Ectopic Endometrial Tissues of Rats with Endometriosis Based on MDM4/p53/GPX4 Signaling Pathway
Zuoliang ZHANG ; Xiangyu LIN ; Wanrun WANG ; Jiaxing WANG ; Yaling YANG ; Quansheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):39-47
ObjectiveTo investigate the mechanism of modified Shaofu Zhuyutang in inducing ferroptosis in ectopic endometrial tissues of rats with endometriosis through the murine double minute 4 (MDM4)/tumor suppressor p53/glutathione peroxidase 4 (GPX4) signaling pathway. MethodsSeventy SPF-grade female SD rats were randomly divided into a blank group (n = 10), a sham-operated group (n = 10), and a modeling group (n = 50). The sham-operated group underwent laparotomy, while the modeling group was subjected to the autotransplantation method to establish an endometriosis model. After successful modeling, the animals were randomly assigned to the model group, progesterone group (0.25 mg·kg-1), and modified Shaofu Zhuyutang high-, medium-, and low-dose groups (30, 15, and 7.5 g·kg-1, respectively), with 10 rats per group. After four weeks of drug administration, the rats were euthanized for sample collection. The weight and volume of ectopic endometrial tissues were recorded for each group. Transmission electron microscopy (TEM) was employed to observe ultrastructural changes in endometrial tissues, while Prussian blue staining was used to assess iron ion deposition. Serum levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay (ELISA). The relative levels of Fe2+, malondialdehyde (MDA), and glutathione (GSH) in endometrial tissues were determined by colorimetric assay. Immunofluorescence (IF) was used to detect the relative fluorescence intensities of GSH and GPX4 in endometrial tissues. The relative expression levels of phosphatidylinositol 3-kinase (PI3K), phosphorylated PI3K (p-PI3K), protein kinase B (Akt), phosphorylated Akt (p-Akt), MDM4, p53, and GPX4 proteins were detected by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to assess the mRNA expression of PI3K, Akt, MDM4, p53, and GPX4. ResultsCompared with the blank and sham-operated groups, the model group exhibited reduced ferroptotic damage in ultrastructural observations, decreased ferroptotic aggregates and positive iron ion expression area on Prussian blue staining, elevated serum IL-6, IL-1β, and TNF-α levels, reduced Fe2+ and MDA content, increased GSH content in endometrial tissues, and enhanced GSH and GPX4 fluorescence intensities (P<0.01). The protein and mRNA expression levels of PI3K, p-PI3K, Akt, p-Akt, MDM4, and GPX4 were elevated, while those of p53 were decreased (P<0.01). Compared with the model group, in the progesterone group and the modified Shaofu Zhuyutang high- and medium-dose groups, ferroptotic damage in ultrastructural observations was exacerbated to varying degrees by TEM, and ferroptotic aggregates and positive iron ion expression areas were increased on Prussian blue staining. Serum IL-6, IL-1β, and TNF-α levels decreased, Fe2+ and MDA content increased, and GSH content decreased in endometrial tissues. GSH and GPX4 fluorescence intensities weakened, while the protein and mRNA expression levels of PI3K, p-PI3K, Akt, p-Akt, MDM4, and GPX4 decreased, and those of p53 increased (P<0.05, P<0.01). Conclusionmodified Shaofu Zhuyutang may exert therapeutic effects in endometriosis by inducing ferroptosis in ectopic endometrial tissues, alleviating inflammatory responses, and modulating key proteins in the MDM4/p53/GPX4 signaling pathway.
5.Study on stir-frying process of Platycodon grandiflorum and its protective effect on acute lung injury in mice before and after stir-frying
Xiaotian HAN ; Lei WANG ; Yaping WANG ; Yaling YANG ; Bin QI
China Pharmacy 2025;36(13):1587-1592
OBJECTIVE To optimize the stir-frying process of Platycodon grandiflorum, compare the protective effect of P. grandiflorum on lung injury in mice before and after stir-frying, and preliminarily explore the characteristics of “enhanced efficacy through processing” of stir-frying P. grandiflorum. METHODS On the basis of single-factor experiment, the stir-frying time, temperature and frequency were taken as factors, and the comprehensive scores of appearance traits, platycodin D content and alcohol extract content were taken as indexes. Box-Behnken response surface experiment was designed to optimize the stir-frying process of P. grandiflorum and verify it. The mice were divided into blank control group, model group, dexamethasone group (positive control drug, 5 mg/kg), P. grandiflorum low-dose and high-dose groups (0.6,1.2 g/kg), fried P. grandiflorum low and high dose groups (0.6, 1.2 g/kg), with 8 mice in each group. The treatment was given once a day for 10 consecutive days. After the last administration, acute lung injury model was established by intratracheal instillation of lipopolysaccharide. The levels of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α) in serum and superoxide dismutase (SOD), myeloperoxidase (MPO) and malondialdehyde (MDA) in lung tissue were detected, lung wet/dry weight ratio and thymus index were calculated, and the pathological changes of lung tissue were observed. RESULTS The optimum processing conditions were as follows:stir- frying temperature of 120 ℃, stir-frying time of 12 min, stir-frying frequency of 19 r/min; the comprehensive scores of the three batches of process verification were all greater than 97 points, RSD<3% (n=3). The results of pharmacodynamic experiments showed that compared with blank control group, the lung dry-wet weight ratio as well as the levels of IL-6, IL-1β, TNF-α, MPO and MDA in the model group were significantly increased (P<0.01), the thymus index and SOD level were significantly decreased (P<0.01), and the lung tissue was significantly damaged. Compared with model group, above indexes of the mice in each administration group were significantly improved (P<0.01), and the lung tissue injury was significantly reduced. At the same dose, except for the lung dry-wet weight ratio, the above indexes of the mice in the stir-fried P. grandiflorum groups were significantly improved compared with P. grandiflorum 涵。E-mail:495758271@qq.com groups (P<0.05), and the lung tissue damage was further reduced. CONCLUSIONS The optimized stir-frying process is stable and feasible. The protective effect of stir-fried P.grandiflorum on acute lung injury in mice is better than that of raw products at the same dosage.
6.Application and data analysis of the cardio-cerebrovascular events monitoring system in Yichang
Zhengchao FANG ; Jiajuan YANG ; Chi HU ; Chan WU ; Yaling DENG ; Zhiying YU ; Jie ZHU ; Ling ZHANG
Journal of Public Health and Preventive Medicine 2025;36(6):95-98
Objective To analyze the monitoring data of cardio-cerebrovascular diseases prevention and control system in Yichang in 2022, and to provide data support and experience for the precise prevention and treatment of cardio-cerebrovascular diseases. Methods Acute cardiovascular and cerebrovascular event data were collected from the Yichang Cardio-cerebrovascular Events Monitoring System from January 1, 2022 to December 31, 2022. Descriptive analysis was conducted for the data collected. Statistical analysis was performed using SPSS 20.0 software, and a chi-square test was used to analyze the count data. Results A total of 37,217 cases of cardio-cerebrovascular events were monitored in Yichang in 2022. The crude incidence and the standardized incidence were 983.84/100,000 and 541.55/100,000, respectively. The incidence in males was higher than females (554.93/100,000 vs 428.91/100,000,χ2 =464.52,P<0.05). The top three diseases were cerebral infarction, acute myocardial infarction, and cerebral hemorrhage. The incidence of events increased with age, and 79.80% of the cases were over 60 years old. The main onset time was from May to August. Conclusion The use of the cardio-cerebrovascular events monitoring system in Yichang and the implementation of “mandatory reporting card” monitoring can timely obtain the epidemic characteristics of the diseases, provide support for the precise formulation of prevention and control strategies and measures, reduce underreporting rates, and improve the monitoring system, which is worthy of reference and promotion.
7.Application of large language models in disease diagnosis and treatment.
Xintian YANG ; Tongxin LI ; Qin SU ; Yaling LIU ; Chenxi KANG ; Yong LYU ; Lina ZHAO ; Yongzhan NIE ; Yanglin PAN
Chinese Medical Journal 2025;138(2):130-142
Large language models (LLMs) such as ChatGPT, Claude, Llama, and Qwen are emerging as transformative technologies for the diagnosis and treatment of various diseases. With their exceptional long-context reasoning capabilities, LLMs are proficient in clinically relevant tasks, particularly in medical text analysis and interactive dialogue. They can enhance diagnostic accuracy by processing vast amounts of patient data and medical literature and have demonstrated their utility in diagnosing common diseases and facilitating the identification of rare diseases by recognizing subtle patterns in symptoms and test results. Building on their image-recognition abilities, multimodal LLMs (MLLMs) show promising potential for diagnosis based on radiography, chest computed tomography (CT), electrocardiography (ECG), and common pathological images. These models can also assist in treatment planning by suggesting evidence-based interventions and improving clinical decision support systems through integrated analysis of patient records. Despite these promising developments, significant challenges persist regarding the use of LLMs in medicine, including concerns regarding algorithmic bias, the potential for hallucinations, and the need for rigorous clinical validation. Ethical considerations also underscore the importance of maintaining the function of supervision in clinical practice. This paper highlights the rapid advancements in research on the diagnostic and therapeutic applications of LLMs across different medical disciplines and emphasizes the importance of policymaking, ethical supervision, and multidisciplinary collaboration in promoting more effective and safer clinical applications of LLMs. Future directions include the integration of proprietary clinical knowledge, the investigation of open-source and customized models, and the evaluation of real-time effects in clinical diagnosis and treatment practices.
Humans
;
Large Language Models
;
Tomography, X-Ray Computed
8.Severe COVID-19 and inactivated vaccine in diabetic patients with SARS-CoV-2 infection.
Yaling YANG ; Feng WEI ; Duoduo QU ; Xinyue XU ; Chenwei WU ; Lihua ZHOU ; Jia LIU ; Qin ZHU ; Chunhong WANG ; Weili YAN ; Xiaolong ZHAO
Chinese Medical Journal 2025;138(10):1257-1259
9.Analysis of the incidence and influencing factors of collateral circulation in high-risk patients with sleep apnea complicated with stroke treated by continuous positive pressure ventilation.
Linna ZHU ; Yanli ZHOU ; Yang ZHANG ; Yaling LIU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(4):368-375
Objective:To investigate the incidence of collateral circulation in high-risk patients with sleep apnea and stroke treated by continuous positive airway pressure (CPAP) ventilation and to analyze the influencing factors. Methods:A total of 152 patients diagnosed with obstructive sleep apnea-hypopnea syndrome (OSAHS) combined with acute ischemic stroke (AIS) who were admitted to our hospital from January 2020 to June 2022 were selected for this study. Based on the apnea-hypopnea index (AHI), the patients were divided into three groups: mild (n=44), moderate (n=72), and severe (n=36). After treatment, the patients were further classified into a group without collateral circulation (n=30) and a group with collateral circulation (n=26), which included those with moderate collateral circulation (n=69) and good collateral circulation (n=27). Clinical data across the different groups were compared, and multiple factor analysis was performed to identify factors affecting the occurrence of collateral circulation. Results:The AHI and IL-6 levels in the severe group were significantly higher than those in the mild and moderate groups, while the levels of NO and PO2 were significantly lower in the severe group compared to the mild and moderate groups, with statistically significant differences among the three groups (P<0.05). After treatment, all groups showed improvement, and the proportion of patients with collateral circulation was 84.09% in the mild group, 81.94% in the moderate group, and 72.22% in the severe group. Significant differences in age, AHI, NIHSS, NO, MoCA, and MMSE scores were observed between the groups with and without collateral circulation (P<0.05). In the group with collateral circulation, the scores for age, AHI, and NIHSS in the good collateral circulation subgroup were significantly lower than those in the poor collateral circulation and moderate collateral circulation subgroups, while the scores for NO, MoCA, and MMSE were significantly higher in the good collateral circulation subgroup. Multi-factor analysis revealed that age, AHI, and NIHSS were independent risk factors for collateral circulation, whereas NO, MoCA, and MMSE served as protective factors that were negatively correlated with collateral circulation. Classification tree model results indicated that AHI had the greatest influence on the occurrence of collateral circulation among the five influencing factors, demonstrating good predictive capability. Conclusion:Most high-risk patients with sleep apnea and stroke are likely to develop collateral circulation following continuous positive airway pressure ventilation. Factors such as age, AHI, NIHSS, NO, MoCA, and MMSE are important determinants affecting the occurrence of collateral circulation.
Humans
;
Collateral Circulation
;
Continuous Positive Airway Pressure
;
Stroke/physiopathology*
;
Sleep Apnea, Obstructive/physiopathology*
;
Risk Factors
;
Male
;
Incidence
;
Female
;
Middle Aged
;
Aged
;
Sleep Apnea Syndromes/physiopathology*
;
Interleukin-6/blood*
10.Cannabidiol inhibits neuronal endoplasmic reticulum stress and apoptosis in rats with multiple concussions by regulating the PERK-eIF2α-ATF4-CHOP pathway.
Yujia YANG ; Lifang YANG ; Yaling WU ; Zhaoda DUAN ; Chunze YU ; Chunyun WU ; Jianyun YU ; Li YANG
Journal of Southern Medical University 2025;45(6):1240-1250
OBJECTIVES:
To explore the effects of cannabidiol on endoplasmic reticulum stress and neuronal apoptosis in rats with multiple concussions (MCC).
METHODS:
SD rats were randomized into sham group, MCC group, 1% tween20 (TW) treatment group, and low-dose (10 mg/kg) and high-dose (40 mg/kg) cannabidiol treatment groups. In all but the sham group, MCC models were established using a metal pendulum percussion device, after which the rats received daily intraperitoneal injections of the corresponding agents for 2 weeks. The expressions of PERK, eIF2α, ATF4, CHOP, TRIB3, p-Akt and pro-caspase-3 in the brain tissue of the rats were detected with qRT-PCR, Western blotting and immunofluorescence staining. The core targets of cannabidiol in treatment of traumatic brain injury (TBI) were identified by network pharmacology analysis, and molecular docking was carried out to simulate the interaction of cannabidiol with the factors related to endoplasmic reticulum stress and apoptosis.
RESULTS:
Compared with the sham-operated rats, the rat models of MCC showed significantly increased mRNA expressions of PERK, eIF2α and CHOP and protein expressions of PERK, eIF2α, ATF4, CHOP, TRIB3, p-AKT and pro-caspase-3 in the cerebral cortex. CBD treatment, especially at the high dose, obviously increased the expression of p-Akt and lowered the expression levels of the other factors tested in the rat models. Network pharmacology analysis indicated interactions of the core targets of CBD with the factors related to endoplasmic reticulum stress and TBI, and molecular docking study showed a high binding energy of CBD with multiple factors pertaining to endoplasmic reticulum stress and apoptosis.
CONCLUSIONS
MCC induce endoplasmic reticulum stress and apoptosis in rat brain tissues, for which CBD, especially at a high dose, provides neuroprotective effects by inhibiting endoplasmic reticulum stress and cell apoptosis.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Apoptosis/drug effects*
;
Rats, Sprague-Dawley
;
Activating Transcription Factor 4/metabolism*
;
Transcription Factor CHOP/metabolism*
;
Rats
;
Eukaryotic Initiation Factor-2/metabolism*
;
Signal Transduction/drug effects*
;
eIF-2 Kinase/metabolism*
;
Cannabidiol/pharmacology*
;
Neurons/metabolism*
;
Brain Concussion/metabolism*
;
Male
;
Molecular Docking Simulation


Result Analysis
Print
Save
E-mail