1.Clinical Observation on Treatment of Hip Joint Pain with Mailuoning Compound Solution via Nerve Blocks around Hip Joint
Tao JIN ; Fuchang MA ; Cheng HUANG ; Manxia ZHI ; Ming YA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):152-158
ObjectiveTo observe the clinical efficacy and safety of Mailuoning compound solution in the treatment of hip joint pain via nerve blocks around the hip joint. MethodsFrom March 2015 to March 2019,a total of 136 patients with hip joint pain who met the inclusion criteria were admitted and divided into an observation group and a control group according to the random number table method. Among them,six cases fell off due to failure to complete five treatments,and finally, 130 patients entered clinical observation,with 65 cases in each group. The observation group used Mailuoning compound solution for nerve blocks around the hip joint(including obturator nerve,femoral nerve branch,superior gluteal nerve, and hip fascia). The control used Mailuoning compound solution for a simple obturator nerve block. The differences in the visual analogue scale (VAS) and Harris score of hip joint of the two groups before and after treatment were observed. Any adverse drug reactions and adverse events during the treatment of the patients were recorded. ResultsThe VAS score of the two groups was significantly decreased after treatment (P<0.01). The observation group had a more significant decrease compared to the control group(P<0.01). The total Harris score of hip joint, pain degree,function score, and motion of joint of the two groups were significantly improved after treatment (P<0.01). Compared with the control group,the improvement in the total Harris score of hip joint, pain degree,and function score was more significant in the observation group (P<0.01). The clinical efficacy based on the Harris score of hip joint of the two groups was compared. The excellent and good rate of the observation group was 84.62% (55/65), which was significantly better than that of the control group [56.92% (37/65)] (χ2=12.05,P<0.01). The follow-up results showed that the patients who achieved excellent and good results had stable curative effects and low recurrence rates,and there was no significant difference in recurrence rate between the two groups. Case analysis showed that after treatment of femoral head necrosis,the saccular transparent shadow of the femoral head was significantly reduced,and the number of bone trabeculae increased. The low-density shadow decreased as can be seen on hip X-rays. In patients with hip osteoporosis after treatment,the number of bone trabeculae increased, and the low density shadow reduced. ConclusionThe use of Mailuoning compound solution for nerve blocks around the hip joint gives full play to the synergistic effect of Mailuoning compound solution and nerve block. It can effectively relieve hip joint pain,promote the recovery of hip joint function,reduce the disability rate,and improve the quality of life of patients. Early intervention is an important link in the treatment of hip joint pain diseases,which can effectively control the development of the patient's disease. Mailuoning compound solution is a new idea and method to treat hip joint pain through neuroregulation,which is easy to operate,with high safety and good therapeutic effect. In future studies,a larger sample size is needed,and more in-depth research should be conducted on the imaging changes and mechanisms of action for various hip joint pain diseases.
2.Design, synthesis and evaluation of oxadiazoles as novel XO inhibitors
Hong-zhan WANG ; Ya-jun YANG ; Ying YANG ; Fei YE ; Jin-ying TIAN ; Chuan-ming ZHANG ; Zhi-yan XIAO
Acta Pharmaceutica Sinica 2025;60(1):164-171
Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. Based on the previously identified potent XO inhibitor
3.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
4.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
5.Promotion of Angiogenesis by Colorectal Cancer Cell LoVo Derived-exosomes Through Transferring pEGFR
Ya-Jie CHENG ; Xue-Tong ZHOU ; Rui WANG ; Jin FANG
Progress in Biochemistry and Biophysics 2025;52(5):1229-1240
ObjectiveThis study sought to investigate the impact of exosomes derived from LoVo cells (LoVo-Exos) in colorectal cancer (CRC) on tumor angiogenesis, as well as to elucidate the potential molecular mechanisms underlying their pro-angiogenic effects. MethodsLoVo-Exos were isolated via ultracentrifugation, and their internalization into recipient human umbilical vein endothelial cells (HUVECs) was visualized using confocal microscopy. The influence of LoVo-Exos on angiogenesis was assessed through an in vitro tube formation assay. Additionally, the pro-angiogenic effects of LoVo-Exos were evaluated in vivo using a matrix gluing assay in mice. To investigate the molecular mechanisms through which LoVo-Exos facilitate angiogenesis, Western blot analysis was employed to examine the transfer of pEGFR by LoVo-Exos into recipient cells. Both Western blot and ELISA were utilized to assess the expression levels of key signaling proteins within the EGFR-ERK pathway, as well as the expression of downstream angiogenic core molecules. Furthermore, the impact of EGFR knockdown and ERK inhibitor treatment on angiogenesis was evaluated, with subsequent analysis of the expression of downstream angiogenic core molecules following these interventions. ResultsConfocal microscopy demonstrated the internalization of LoVo-Exos into HUVECs. In vitro angiogenesis assays further indicated that LoVo-Exos significantly enhanced the formation of tubular structures in HUVECs. Additionally, macroscopic examination of subcutaneous matrix plug formation in mice revealed a substantial increase in vascular-like structures within the matrix plugs following the administration of LoVo-Exos, compared to the PBS control group. Hematoxylin and eosin (HE) staining revealed the presence of erythrocyte-filled microvessels within the matrix plugs combined with LoVo-Exos. Furthermore, immunohistochemical analysis demonstrated the expression of the endothelial cell marker CD31 in these matrix plugs. The presence of CD31-positive cells in the LoVo-Exos-treated matrix plugs was associated with a significant enhancement in the formation of luminal structures. These findings suggest that LoVo-Exos facilitate the in vivo development of vascular-like structures. Subsequent investigations demonstrated that LoVo-Exos facilitated the delivery of pEGFR to HUVEC, thereby enhancing angiogenesis. Conversely, LoVo-Exos with EGFR knockdown exhibited a diminished capacity to promote angiogenesis, an effect that was further attenuated by the ERK phosphorylation inhibitor U0126. Western blot analysis assessing the activation of the EGFR-ERK signaling pathway in HUVEC indicated that LoVo-Exos augmented angiogenesis through the activation of this pathway. Furthermore, analysis of the impact of LoVo-Exos on the expression of downstream angiogenic core molecules revealed an increase in interleukin-8 (IL-8) secretion in HUVEC. The enhancement observed was diminished in LoVo-Exos following EGFR knockdown, and this reduction was counteracted by the ERK phosphorylation inhibitor U0126. ConclusionThe underlying mechanism may involve the delivery of pEGFR in LoVo-Exos to HUVECs, leading to increased IL-8 secretion via the EGFR-ERK signaling pathway, thereby enhancing the angiogenic potential of HUVECs. This finding may offer new insights into the mechanisms underlying cancer metastasis.
6.Medication rules and mechanisms of treating chronic renal failure by Jinling medical school based on data mining, network pharmacology, and experimental validation.
Jin-Long WANG ; Wei WU ; Yi-Gang WAN ; Qi-Jun FANG ; Yu WANG ; Ya-Jing LI ; Fee-Lan CHONG ; Sen-Lin MU ; Chu-Bo HUANG ; Huang HUANG
China Journal of Chinese Materia Medica 2025;50(6):1637-1649
This study aims to explore the medication rules and mechanisms of treating chronic renal failure(CRF) by Jinling medical school based on data mining, network pharmacology, and experimental validation systematically and deeply. Firstly, the study selected the papers published by the inherited clinicians in Jinling medical school in Chinese journals using the subject headings named "traditional Chinese medicine(TCM) + chronic renal failure", "TCM + chronic renal inefficiency", or "TCM + consumptive disease" in China National Knowledge Infrastructure, Wanfang, and VIP Chinese Science and Technology Periodical Database and screened TCM formulas for treating CRF according to inclusion and exclusion criteria. The study analyzed the frequency of use of single TCM and the four properties, five tastes, channel tropism, and efficacy of TCM used with high frequency and performed association rule and clustering analysis, respectively. As a result, a total of 215 TCM formulas and 235 different single TCM were screened, respectively. The TCM used with high frequency included Astragali Radix, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Poria, and Atractylodis Macrocephalae Rhizoma(top 5). The single TCM characterized by "cold properties, sweet flavor, and restoring spleen channel" and the TCM with the efficacy of tonifying deficiency had the highest frequency of use, respectively. Then, the TCM with the rules of "blood-activating and stasis-removing" and "diuretic and dampness-penetrating" appeared. In addition, the core combination of TCM [(Hexin Formula, HXF)] included "Astragali Radix, Rhei Radix et Rhizoma, Poria, Salviae Miltiorrhizae Radix, and Angelicae Sinensis Radix". The network pharmacology analysis showed that HXF had 91 active compounds and 250 corresponding protein targets including prostaglandin-endoperoxide synthase 2(PTGS2), PTGS1, sodium voltage-gated channel alpha subunit 5(SCN5A), cholinergic receptor muscarinic 1(CHRM1), and heat shock protein 90 alpha family class A member 1(HSP90AA1)(top 5). Gene Ontology(GO) function analysis revealed that the core targets of HXF predominantly affected biological processes, cellular components, and molecular functions such as positive regulation of transcription by ribonucleic acid polymerase Ⅱ and DNA template transcription, formation of cytosol, nucleus, and plasma membrane, and identical protein binding and enzyme binding. Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis revealed that CRF-related genes were involved in a variety of signaling pathways and cellular metabolic pathways, primarily involving "phosphatidylinositol 3-kinase(PI3K)-protein kinase B(Akt) pathway" and "advanced glycation end products-receptor for advanced glycation end products". Molecular docking results showed that the active components in HXF such as isomucronulatol 7-O-glucoside, betulinic acid, sitosterol, and przewaquinone B might be crucial in the treatment of CRF. Finally, a modified rat model with renal failure induced by adenine was used, and the in vivo experimental confirmation was performed based on the above-mentioned predictions. The results verify that HXF can regulate mitochondrial autophagy in the kidneys and the PI3K-Akt-mammalian target of rapamycin(mTOR) signaling pathway activation at upstream, so as to alleviate renal tubulointerstitial fibrosis and then delay the progression of CRF.
Data Mining
;
Drugs, Chinese Herbal/chemistry*
;
Network Pharmacology
;
Humans
;
Kidney Failure, Chronic/metabolism*
;
Medicine, Chinese Traditional
;
China
7.Research progress on interactions between medicinal plants and microorganisms.
Er-Jun WANG ; Ya-Long ZHANG ; Xiao-Hui MA ; Hua-Qian GONG ; Shao-Yang XI ; Gao-Sen ZHANG ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(12):3267-3280
The interactions between microorganisms and medicinal plants are crucial to the quality improvement of medicinal plants. Medicinal plants attract microorganisms to colonize by secreting specific compounds and provide niche and nutrient support for these microorganisms, with a symbiotic network formed. These microorganisms grow in the rhizosphere, phyllosphere, and endophytic tissues of plants and significantly improve the growth performance and medicinal component accumulation of medicinal plants by promoting nutrient uptake, enhancing disease resistance, and regulating the synthesis of secondary metabolites. Microorganisms are also widely used in the ecological planting of medicinal plants, and the growth conditions of medicinal plants are optimized by simulating the microbial effects in the natural environment. The interactions between microorganisms and medicinal plants not only significantly improve the yield and quality of medicinal plants but also enhance their geoherbalism, which is in line with the concept of green agriculture and eco-friendly development. This study reviewed the research results on the interactions between medicinal plants and microorganisms in recent years and focused on the analysis of the great potential of microorganisms in optimizing the growth environment of medicinal plants, regulating the accumulation of secondary metabolites, inducing systemic resistance, and promoting the ecological planting of medicinal plants. It provides a scientific basis for the research on the interactions between medicinal plants and microorganisms, the research and development of microbial agents, and the application of microorganisms in the ecological planting of medicinal plants and is of great significance for the quality improvement of medicinal plants and the green and sustainable development of TCM resources.
Plants, Medicinal/metabolism*
;
Bacteria/genetics*
;
Symbiosis
8.Construction of a multigene expression system for plants and verification of its function.
Yin-Yin JIANG ; Ya-Nan TANG ; Yu-Ping TAN ; Shu-Fu SUN ; Juan GUO ; Guang-Hong CUI ; Jin-Fu TANG
China Journal of Chinese Materia Medica 2025;50(12):3291-3296
Constructing an efficient and easy-to-operate multigene expression system is currently a crucial part of plant genetic engineering. In this study, a fragment carrying three independent gene expression cassettes and the expression unit of the gene-silencing suppressor protein(RNA silencing suppressor 19 kDa protein, P19) simultaneously was designed and constructed. This fragment was cloned into the commonly used plant expression vector pCAMBIA300, and the plasmid pC1300-TP2-P19 was obtained. Each gene expression cassette consists of different promoters, fusion tags, and terminators. The target gene can be flexibly inserted into the corresponding site through enzymatic digestion and ligation or recombination and fused with different protein tags, which provides great convenience for subsequent detection. The enhanced green fluorescent protein(eGFP) reporter gene was individually constructed into each expression cassette to verify the feasibility of this vector system. The results of tobacco transient expression and laser-confocal microscopy showed that each expression cassette presented independent and normal expression. Meanwhile, the three key enzyme genes in the betanin synthesis pathway, BvCYP76AD, BvDODA1, and DbDOPA5GT, were constructed into the three expression cassettes. The results of tobacco transient expression phenotype, protein immunoblotting(Western blot), and chemical detection of product demonstrated that the three exogenous genes were highly expressed, and the target compound betanin was successfully produced. The above results indicated that the constructed multigene expression system for plants in this study was efficient and reliable and can achieve the co-transformation of multiple plant genes. It can provide a reliable vector platform for the analysis of plant natural product synthesis pathways, functional verification, and plant metabolic engineering.
Nicotiana/metabolism*
;
Genetic Vectors/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Genetic Engineering/methods*
;
Green Fluorescent Proteins/metabolism*
;
Gene Expression
9.Mechanisms and treatment of inflammation-cancer transformation in colon from perspective of cold and heat in complexity in integrative medicine.
Ning WANG ; Han-Zhou LI ; Tian-Ze PAN ; Wei-Bo WEN ; Ya-Lin LI ; Qian-Qian WAN ; Yu-Tong JIN ; Yu-Hong BIAN ; Huan-Tian CUI
China Journal of Chinese Materia Medica 2025;50(10):2605-2618
Colorectal cancer(CRC) is one of the most common malignant tumors worldwide, primarily originating from recurrent inflammatory bowel disease(IBD). Therefore, blocking the inflammation-cancer transformation in the colon has become a focus in the early prevention and treatment of CRC. The inflammation-cancer transformation in the colon involves multiple types of cells and complex pathological processes, including inflammatory responses and tumorigenesis. In this complex pathological process, immune cells(including non-specific and specific immune cells) and non-immune cells(such as tumor cells and fibroblasts) interact with each other, collectively promoting the progression of the disease. In traditional Chinese medicine(TCM), inflammation-cancer transformation in the colon belongs to the categories of dysentery and diarrhea, with the main pathogenesis being cold and heat in complexity. This paper first elaborates on the complex molecular mechanisms involved in the inflammation-cancer transformation process in the colon from the perspectives of inflammation, cancer, and their mutual influences. Subsequently, by comparing the pathogenic characteristics and clinical manifestations between inflammation-cancer transformation and the TCM pathogenesis of cold and heat in complexity, this paper explores the intrinsic connections between the two. Furthermore, based on the correlation between inflammation-cancer transformation in the colon and the TCM pathogenesis, this paper delves into the importance of the interaction between inflammation and cancer. Finally, it summarizes and discusses the clinical and basic research progress in the TCM intervention in the inflammation-cancer transformation process, providing a theoretical basis and treatment strategy for the treatment of CRC with integrated traditional Chinese and Western medicine.
Humans
;
Colon/pathology*
;
Integrative Medicine
;
Animals
;
Cold Temperature
;
Cell Transformation, Neoplastic/drug effects*
;
Medicine, Chinese Traditional
;
Hot Temperature
;
Inflammation
;
Drugs, Chinese Herbal/therapeutic use*
;
Colonic Neoplasms/drug therapy*
10.Mechanism of Zuogui Pills in regulating bone metabolism through OXT/OXTR feed-forward loop based on theory of "all marrows dominated by brain".
Yan-Chen FENG ; Ya-Li LIU ; Xue DANG ; Lu SUN ; Jin-Yao LI ; Jia-Bin SONG ; Shun-Zhi YANG ; Fei-Xiang LIU
China Journal of Chinese Materia Medica 2025;50(10):2761-2768
Grounded in the theory of "all marrows dominated by brain", this study explored the therapeutic mechanism of Zuogui Pills in modulating the oxytocin(OXT)/oxytocin receptor(OXTR) feed-forward loop in the treatment of postmenopausal osteoporosis(PMOP). A PMOP rat model was established using ovariectomy, and 70 Sprague-Dawley female rats were randomly divided into the following groups: sham operation group, model group, estradiol group(17β-estradiol, 0.05 mg·kg~(-1)·d~(-1)), Zuogui Pills low, medium, and high dose groups(0.2, 0.4, 0.8 g·kg~(-1)·d~(-1), respectively), and an antagonist group(atosiban 0.9 mg·kg~(-1)·d~(-1) + 17β-estradiol 0.05 mg·kg~(-1)·d~(-1) + Zuogui Pills 0.4 g·kg~(-1)·d~(-1)). After 12 weeks of model establishment, treatment was administered by gavage once daily for another 12 weeks, followed by sample collection. Enzyme-linked immunosorbent assay(ELISA) was used to measure serum levels of estrogen(E_2), OXT, tartrate-resistant acid phosphatase(TRACP-5b), and bone alkaline phosphatase(BALP). Histopathological changes in the left distal femur were observed through hematoxylin and eosin(HE) staining. Micro-computed tomography(micro-CT) was used to analyze the microstructure of the right distal femur. Western blot was employed to detect the expression levels of OXTR, small GTP-binding protein Ras, Raf1 proto-oncogene(Raf1), mitogen-activated protein kinase kinase 1/2(MEK1/2), and extracellular signal-regulated kinase 1/2(ERK1/2), and their phosphorylated forms in tibial tissues. Compared with the model group, the Zuogui Pills medium and high dose groups showed significantly increased levels of E_2, OXT, and BALP, with a notable decrease in TRACP-5b levels. Morphologically, the trabeculae in the left distal femur were more tightly arranged. The fibrous structure in the right distal femur was significantly improved in the Zuogui Pills high dose group. Additionally, the expression of OXTR, Ras, p-Raf1, p-MEK1/2, and p-ERK1/2 proteins in tibial tissues was significantly increased. The therapeutic effect of the Zuogui Pills high dose group was partially inhibited when an OXTR antagonist was administered. These findings suggest that Zuogui Pills can regulate the OXT/OXTR feed-forward loop, activate the phosphorylation of the downstream Ras/Raf1/MEK/ERK signaling pathway, and ultimately improve bone mineral density, thereby exerting therapeutic effects in PMOP.
Animals
;
Rats, Sprague-Dawley
;
Rats
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Oxytocin/genetics*
;
Receptors, Oxytocin/genetics*
;
Humans
;
Osteoporosis, Postmenopausal/genetics*
;
Bone and Bones/drug effects*
;
Brain/drug effects*
;
Bone Marrow/drug effects*

Result Analysis
Print
Save
E-mail