1.Icariin pretreatment enhances effect of human periodontal stem cells on M1-type macrophages
Ting YU ; Dongmei LYU ; Hao DENG ; Tao SUN ; Qian CHENG
Chinese Journal of Tissue Engineering Research 2025;29(7):1328-1335
BACKGROUND:Human periodontal stem cells have a certain inhibitory effect on the pro-inflammatory function of M1-type macrophages,and it is not clear whether icariin,which has anti-inflammatory and other pharmacological activities,can enhance the inhibitory effect of human periodontal stem cells on M1-type macrophages. OBJECTIVE:To investigate the effect of icariin on M1 macrophages after pretreatment of human periodontal stem cells. METHODS:Primary human periodontal stem cells were isolated,cultured and characterized.THP-1 was induced and M1-type macrophages were identified by immunofluorescence staining and PCR.Human periodontal stem cells were cultured with α-MEM complete medium containing concentrations of 10-7,10-6,10-5,and 10-4 mol/L icariin,and the cytotoxicity of Icariin on human periodontal stem cells was detected by the CCK-8 assay at 1,3,5,and 7 days,respectively.α-MEM complete medium,untreated α-MEM conditioned medium for human periodontal stem cells and α-MEM conditioned medium for human periodontal stem cells pretreated with icariin for 24 hours were conditioned with RPMI-1640 complete medium in a 1:1 ratio for M1-type macrophages in the control,untreated,and pretreated groups,and 24 hours later,the mRNA expression of inflammatory factors in M1 macrophages was detected by RT-PCR.The protein expression of inflammatory factors in M1 macrophages was detected by ELISA.The expression of surface markers and nuclear factor-κB pathway-related proteins in M1/M2 macrophages was detected by western blot assay. RESULTS AND CONCLUSION:(1)CCK-8 assay results showed that 10-7,10-6,10-5,10-4 mol/L icariin was not cytotoxic to the human periodontal stem cells,and from day 5 onwards,all the concentrations increased the cell viability,and promoted the cell proliferation.10-4 mol/L icariin was selected for follow-up experiment.(2)RT-PCR and ELISA results showed that compared with the control group,the untreated group and the pretreated group both decreased the expression and secretion of interleukin-1β,interleukin-6,and tumor necrosis factor-α of M1-type macrophages(P<0.05),and the pretreated group was lower than the untreated group(P<0.05).(3)Western blot assay results showed that compared with the untreated group,the expression of CD86 was significantly lower in the pretreated group(P<0.05);compared with the control group,the expression of CD206,a surface marker of M2-type macrophages,was elevated in both the untreated and pretreated groups(P<0.01),and it was significantly higher in the pretreated group than in the untreated group(P<0.01).In M1-type macrophages after 24 hours of conditioned culture,compared with the control group,the expression of nuclear factor-κB/P65 was decreased in the untreated group and the pretreated group(P<0.01),and the expression of p-IκBα was decreased only in the pretreated group(P<0.01);the expression of both nuclear factor-κB/P65 and p-IκBα was significantly reduced in the pretreated group compared with the untreated group(P<0.05),while the difference of IκBα in the three groups was not statistically significant.(4)These results indicated that icariin enhanced the inhibitory effect of human periodontal stem cells on M1-type macrophages,and this effect may be related to the inhibition of the nuclear factor-κB signaling pathway of macrophages.
2.Cognitive Disorders Awareness and Associated Risk Factors in Xizang Autonomous Region
Yu HAO ; Junshan WANG ; Ma ZHUO ; Quzhen SUOLANG ; Shiyong JI ; Yaxiong HU ; Zhijie DING ; Zhuoga CIDAN ; Jing YUAN ; Yuhua ZHAO
Medical Journal of Peking Union Medical College Hospital 2025;16(2):472-478
To investigate the awareness of cognitive impairment disorders among residents of the Xizang Autonomous Region and its influencing factors, thereby providing a basis for targeted prevention and treatment efforts. From April to December 2024, a questionnaire survey was conducted among permanent residents aged ≥18 years (residing in the Xizang Autonomous Region for 180 days or more). The survey was primarily conducted online, supplemented by QR code distribution during community medical outreach by healthcare workers. Demographic information and data on awareness of cognitive disorders were collected, and an ordered Logistic regression model was used to analyze influencing factors in the overall population and stratified by occupation. A total of 327 questionnaires were collected, with 14 excluded (13 for not meeting residency requirements and 1 for self-reported diagnosis of cognitive impairment), leaving 313 valid questionnaires. The average age of respondents was 42.0±11.9 years; 108 (34.5%) were male, and 205 (65.5%) were female. Most respondents were from Lhasa (78.6%, 246/313); 179 (57.2%) were healthcare workers, and 134 (42.8%) were non-healthcare workers. Regarding awareness of cognitive impairment disorders, 7.3% (23/313) were "unaware", 75.7% (237/313) were "partially aware", and 16.9% (53/313) were "well aware".Ordered Logistic regression analysis revealed that education level of high school or below ( Awareness of cognitive impairment disorders among residents of the Xizang Autonomous Region needs improvement. Educational level, occupation, and prior contact with cognitive impairment patients significantly influence disease awareness. Enhancing overall education levels and using vivid clinical case presentations in health education and public outreach are key strategies to improve public awareness of cognitive impairment disorders.
3.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
4.Study on Brain Functional Network Characteristics of Parkinson’s Disease Patients Based on Beta Burst Period
Yu-Jie HAO ; Shuo YANG ; Shuo LIU ; Xu LOU ; Lei WANG
Progress in Biochemistry and Biophysics 2025;52(5):1279-1289
ObjectiveThe central symptom of Parkinson’s disease (PD) is impaired motor function. Beta-band electrical activity in the motor network of the basal ganglia is closely related to motor function. In this study, we combined scalp electroencephalography (EEG), brain functional network, and clinical scales to investigate the effects of beta burst-period neural electrical activity on brain functional network characteristics, which may serve as a reference for clinical diagnosis and treatment. MethodsThirteen PD patients were included in the PD group, and 13 healthy subjects were included in the healthy control group. Resting-state EEG data were collected from both groups, and beta burst and non-burst periods were extracted. A phase synchronization network was constructed using weighted phase lag indices, and the topological feature parameters of phase synchronization network were compared between the two groups across different periods and four frequency bands. Additionally, the correlation between changes in network characteristics and clinical symptoms was analyzed. ResultsDuring the beta burst period, the topological characteristic parameters of phase synchronization network in all four frequency bands were significantly higher in PD patients compared to healthy controls. The average clustering coefficient of the phase synchronization network in the beta band during the beta burst period was negatively correlated with UPDRS-III scores. In the low gamma band during the non-burst period, the average clustering coefficient of phase synchronization network was positively correlated with UPDRS and UPDRS-III scores, while UPDRS-III scores were positively correlated with global efficiency and average degree. ConclusionThe brain functional network features of PD patients were significantly enhanced during the beta burst period. Moreover, the beta-band brain functional network characteristics during the beta burst period were negatively correlated with clinical scale scores, whereas low gamma-band functional network features during the non-burst period were positively correlated with clinical scale scores. These findings indicate that motor function impairment in PD patients is associated with the beta burst period. This study provides valuable insights for the diagnosis of PD.
5.Extracellular Ubiquitin Enhances Autophagy and Inhibits Mitochondrial Apoptosis Pathway to Protect Neurons Against Spinal Cord Ischemic Injury via CXCR4
Hao FENG ; Dehui CHEN ; Huina CHEN ; Dingwei WU ; Dandan WANG ; Zhengxi YU ; Linquan ZHOU ; Zhenyu WANG ; Wenge LIU
Neurospine 2025;22(1):157-172
Objective:
Neuronal apoptosis is considered to be a critical process in spinal cord injury (SCI). Despite growing evidence of the antiapoptotic, anti-inflammatory, and modulation of ischemic injury tolerance effects of extracellular ubiquitin (eUb), existing studies have paid less attention to the impact of eUb in neurological injury disorders, particularly in SCI. This study aimed to investigate whether eUb can play a protective role in neurons, both in vitro and in vivo, and explores the underlying mechanisms.
Methods:
By utilizing an oxygen glucose deprivation cellular model and a SCI rat model, we firstly investigated the therapeutic effects of eUb on SCI and further explored its effects on neuronal autophagy and mitochondria-dependent apoptosis-related indicators, as well as the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanical target of rapamycin (mTOR) signaling pathway.
Results:
In the SCI models both in vivo and in vitro, early intervention with eUb enhanced neuronal autophagy and inhibited mitochondrial apoptotic pathways, significantly mitigating SCI. Further studies had shown that this protective effect of eUb was mediated through its receptor, CXC chemokine receptor type 4 (CXCR4). Additionally, eUb-enhanced autophagy and antiapoptotic effects were possibly associated with inhibiting the PI3K/Akt/mTOR pathway.
Conclusion
In summary, the study demonstrates that early eUb intervention can enhance autophagy and inhibit mitochondrial apoptotic pathways via CXCR4, protecting neurons and promoting SCI repair.
6.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
7.Aspirin-induced acetylation of APE1/Ref-1 enhances RAGE binding and promotes apoptosis in ovarian cancer cells
Hao JIN ; Yu Ran LEE ; Sungmin KIM ; Eun-Ok LEE ; Hee Kyoung JOO ; Heon Jong YOO ; Cuk-Seong KIM ; Byeong Hwa JEON
The Korean Journal of Physiology and Pharmacology 2025;29(3):293-305
The role of acetylated apurinic/apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref-1) in ovarian cancer remains poorly understood. Therefore, this study aimed to investigate the combined effect of recombinant human APE1/Ref-1 (rhAPE1/Ref-1) and aspirin (ASA) on two ovarian cancer cells, PEO-14, and CAOV3.The viability and apoptosis of ovarian cancer cells treated with rhAPE1/Ref-1 or ASA were assessed. Our results demonstrated that ASA induced rhAPE1/Ref-1 acetylation and widespread hyperacetylation in PEO-14 cells. Additionally, co-treatment with rhAPE1/Ref-1 and ASA substantially reduced cell viability and induced PEO-14 cell apoptosis, not CAOV3, in a dose-dependent manner. ASA increased the expression and membrane localization of the receptor for advanced glycation endproducts (RAGEs). Acetylated APE1/Ref-1 showed enhanced binding to RAGEs. In contrast, RAGE knockdown reduced cell death and poly(ADP-ribose) polymerase cleavage caused by rhAPE1/Ref-1 and ASA combination treatment, highlighting the importance of the APE1/Ref-1-RAGE interaction in triggering apoptosis. Moreover, combination treatment with rhAPE1/Ref-1 and ASA effectively induced apoptosis in 3D spheroid cultures of PEO-14 cells, a model that better mimics the tumor microenvironment. These results demonstrate that acetylated APE1/Ref-1 and its interaction with RAGE is a potential therapeutic target for ovarian cancer. Thus, the combination of ASA and APE1/Ref-1 may offer a promising new strategy for inducing cancer cell death.
8.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
9.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
10.An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment
Hao-Ran CHEN ; Nan ZHOU ; Yu-Da LIU ; Li-Hua PENG
Biomolecules & Therapeutics 2025;33(2):399-407
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.

Result Analysis
Print
Save
E-mail