1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Formulation and interpretation of the Guidelines for the Pharmacist-managed Clinics Service and Document Writing and Usage(Reference)
Lijuan YANG ; Quanzhi LI ; Kejing WANG ; Xiaofen YE ; Zining WANG ; Xuelian YAN ; Liang HUANG ; Juan LI ; Jiancun ZHEN
China Pharmacy 2025;36(11):1301-1305
The writing of pharmacist-managed clinics documents (hereinafter referred to as “outpatient medication record”) is a necessary part of pharmacist-managed clinics service. Outpatient medication record is an important carrier to reflect the quality of pharmacist-managed clinics service. The Chinese Hospital Association Pharmaceutical Specialized Committee was entrusted by the Pharmaceutical Administration Department of the National Health Commission to lead the formulation of the Guidelines for the Pharmacist-managed Clinics Service and Document Writing and Usage (Reference) (hereinafter referred to as Guidelines) according to the compilation method of group standards and the technical route of “documentation combing→framework establishment→draft writing→opinion collection→Guidelines formation”. The Guidelines standardizes the basic requirements of pharmacist-managed clinics record management and the basic content of record, and provides a general template and two specialized templates including pregnant and lactating pharmacist-managed clinics record template and cough and asthma pharmacist-managed clinics record template, which provides a reference for medical institutions to write pharmacist-managed clinics record. This paper introduces the formulation process of Guidelines and analyzes the key contents of Guidelines, which is helpful for the application practice of Guidelines and further improves the quality of pharmacist-managed clinics work.
3.Changing systems: a new strategy for overweight and obesity prevention and control
Journal of Preventive Medicine 2025;37(11):1081-1086
The prevalence of overweight and obesity has been on rising steadily, posing a major challenge to public health. Focusing on changing systems, a new strategy for overweight and obesity prevention and control, this article elaborates on five pillars: government-led efforts to cultivate a sense of shared responsibility among four stakeholders, scientific weight management advocating multi-disciplinary collaborative diagnosis and treatment, precision management covering the entire population throughout the life cycle, policy incentives to optimize obesity-prone environments, and digital and intelligent empowerment to reshape the paradigm of weight management. However, overweight and obesity prevention and control face persistent challenges, including the difficulty of sustaining individual behavior change, the lack of supportive social environments, and the obstacles to implementing precise interventions. It is recommended to begin by shifting societal perceptions, collaborate across multiple sectors to implement a multi-pronged strategy, and promote highly effective and cost-efficient interventions.
4.Construction of a machine learning model for identifying clinical high-risk carotid plaques based on radiomics
Xiaohui WANG ; Xiaoshuo LÜ ; ; Zhan LIU ; Yanan ZHEN ; Fan LIN ; Xia ZHENG ; Xiaopeng LIU ; Guang SUN ; Jianyan WEN ; Zhidong YE ; Peng LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(01):24-34
Objective To construct a radiomics model for identifying clinical high-risk carotid plaques. Methods A retrospective analysis was conducted on patients with carotid artery stenosis in China-Japan Friendship Hospital from December 2016 to June 2022. The patients were classified as a clinical high-risk carotid plaque group and a clinical low-risk carotid plaque group according to the occurrence of stroke, transient ischemic attack and other cerebrovascular clinical symptoms within six months. Six machine learning models including eXtreme Gradient Boosting, support vector machine, Gaussian Naive Bayesian, logical regression, K-nearest neighbors and artificial neural network were established. We also constructed a joint predictive model combined with logistic regression analysis of clinical risk factors. Results Finally 652 patients were collected, including 427 males and 225 females, with an average age of 68.2 years. The results showed that the prediction ability of eXtreme Gradient Boosting was the best among the six machine learning models, and the area under the curve (AUC) in validation dataset was 0.751. At the same time, the AUC of eXtreme Gradient Boosting joint prediction model established by clinical data and carotid artery imaging data validation dataset was 0.823. Conclusion Radiomics features combined with clinical feature model can effectively identify clinical high-risk carotid plaques.
5.Role and mechanism of macrophage-mediated osteoimmune in osteonecrosis of the femoral head.
Yushun WANG ; Jianrui ZHENG ; Yuhong LUO ; Lei CHEN ; Zhigang PENG ; Gensen YE ; Deli WANG ; Zhen TAN
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):119-124
OBJECTIVE:
To summarize the research progress on the role of macrophage-mediated osteoimmune in osteonecrosis of the femoral head (ONFH) and its mechanisms.
METHODS:
Recent studies on the role and mechanism of macrophage-mediated osteoimmune in ONFH at home and abroad were extensively reviewed. The classification and function of macrophages were summarized, the osteoimmune regulation of macrophages on chronic inflammation in ONFH was summarized, and the pathophysiological mechanism of osteonecrosis was expounded from the perspective of osteoimmune, which provided new ideas for the treatment of ONFH.
RESULTS:
Macrophages are important immune cells involved in inflammatory response, which can differentiate into classically activated type (M1) and alternatively activated type (M2), and play specific functions to participate in and regulate the physiological and pathological processes of the body. Studies have shown that bone immune imbalance mediated by macrophages can cause local chronic inflammation and lead to the occurrence and development of ONFH. Therefore, regulating macrophage polarization is a potential ONFH treatment strategy. In chronic inflammatory microenvironment, inhibiting macrophage polarization to M1 can promote local inflammatory dissipation and effectively delay the progression of ONFH; regulating macrophage polarization to M2 can build a local osteoimmune microenvironment conducive to bone repair, which is helpful to necrotic tissue regeneration and repair to a certain extent.
CONCLUSION
At present, it has been confirmed that macrophage-mediated chronic inflammatory immune microenvironment is an important mechanism for the occurrence and development of ONFH. It is necessary to study the subtypes of immune cells in ONFH, the interaction between immune cells and macrophages, and the interaction between various immune cells and macrophages, which is beneficial to the development of potential therapeutic methods for ONFH.
Humans
;
Femur Head/pathology*
;
Osteonecrosis/therapy*
;
Macrophages/pathology*
;
Inflammation
;
Femur Head Necrosis/pathology*
6.Clinical application of Visual throat forceps in the removal of hypopharyngeal foreign body.
Zhonghua MENG ; Qirui ZOU ; Zhongcheng XING ; Shangqing ZHOU ; Zhen ZHANG ; Ye WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):80-82
Objective:To explore the feasibility of using self-made visual throat forceps to remove hypopharyngeal foreign bodies. Methods:The throat forceps were combined with the endoscope and connected to a monitor via a data cable resulting in a visual throat forceps apparatus. This device was utilized to examine and treat the hypopharyngeal foreign bodies. Results:Among 53 patients, foreign bodies were detected in 51,with 48 cases involving hypopharyngeal foreign bodies. All were successfully extracted using the visual throat forceps. Three cases, diagnosed as esophageal foreign bodies by electronic gastroscopy, were treated using the same method. Conclusion:Visual throat forceps can be used to examine the hypopharynx and remove foreign bodies. It has the advantages of simple operation, rapid operation, and high success rate of foreign body removal from the hypopharynx. It is worthy of clinical application.
Humans
;
Hypopharynx/surgery*
;
Pharynx/surgery*
;
Endoscopes
;
Surgical Instruments
;
Foreign Bodies/diagnosis*
7.Metabolomic Analysis of Mesenteric Lymph Fluid in Rats After Alcohol Gavage
Yuan ZHANG ; Zi-Ye MENG ; Wen-Bo LI ; Yu-Meng JING ; Gui-Chen LIU ; Zi-Yao HAO ; Xiu XU ; Zhen-Ao ZHAO
Progress in Biochemistry and Biophysics 2024;51(9):2194-2209
ObjectiveThe absorption of substances into blood is mainly dependent on the mesenteric lymphatic pathway and the portal venous pathway. The substances transported via the portal venous pathway can be metabolized by the biotransformation in the liver. On the contrary, the substances in the mesenteric lymph fluid enter the blood circulation without biotransformation and can affect the body directly. Alcohol consumption is strongly linked to global health risk. Previous reports have analyzed the changes of metabolites in plasma, serum, urine, liver and feces after alcohol consumption. Whether alcohol consumption affects the metabolites in lymph fluid is still unknown. Therefore, it is particularly important to explore the changes of substances transported via the mesenteric lymphatic pathway and analyze their harmfulness after alcohol drinking. MethodsIn this study, male Wistar rats were divided into high, medium, and low-dosage alcohol groups (receiving Chinese Baijiu at 56%, 28% and 5.6% ABV, respectively) and water groups. The experiment was conducted by alcohol gavage lasting 10 d, 10 ml·kg-1·d-1. Then mesenteric lymph fluid was collected for non-targeted metabolomic analysis by using liquid chromatography-mass spectrometry (LC-MS) and bioinformatic analysis. Principal component analysis and hierarchical clustering were performed by using Biodeep. Meanwhile, KEGG enrichment analysis of the differential metabolites was also performed by Biodeep. MetaboAnalyst was used to analyze the relationship between the differential metabolites and diseases. ResultsThe metabolites in the mesenteric lymph fluid of the high-dosage alcohol group change the most. Based on the KEGG enrichment analysis, the pathways of differential metabolites between the high-dosage alcohol group and the control group are mainly enriched in the central carbon metabolism in cancer, bile secretion, linoleic acid metabolism, biosynthesis of unsaturated fatty acids, etc. Interestingly, in the biosynthesis of unsaturated fatty acids category, the content of arachidonic acid is increased by 7.25 times, whereas the contents of palmitic acid, oleic acid, stearic acid, arachidic acid and erucic acid all decrease, indicating lipid substances in lymph fluid are absorbed selectively after alcohol intake. It’s worth noting that arachidonic acid is closely related to inflammatory response. Furthermore, the differential metabolites are mainly related with schizophrenia, Alzheimer’s disease and lung cancer. The differential metabolites between the medium-dosage alcohol and the control group were mainly enriched in phenylalanine metabolism, valine, leucine and isoleucine biosynthesis, linoleic acid metabolism and cholesterol metabolism. The differential metabolites are mainly related to schizophrenia, Alzheimer’s disease, lung cancer and Parkinson’s disease. As the dose of alcohol increases, the contents of some metabolites in lymph fluid increase, including cholesterol, L-leucine, fumaric acid and mannitol, and the number of metabolites related to schizophrenia also tends to increase, indicatingthat some metabolites absorbed by the intestine-lymphatic pathway are dose-dependent on alcohol intake. ConclusionAfter alcohol intake, the metabolites transported via the intestinal-lymphatic pathway are significantly changed, especially in the high-dosage group. Some metabolites absorbed via the intestinal-lymphatic pathway are dose-dependent on alcohol intake. Most importantly, alcohol intake may cause inflammatory response and the occurrence of neurological diseases, psychiatric diseases and cancer diseases. High-dosage drinking may aggravate or accelerate the occurrence of related diseases. These results provide new insights into the pathogenesis of alcohol-related diseases based on the intestinal-lymphatic pathway.
8.Protective Effects of Mesenchymal Stem Cells on Lung Endothelial Cells and The Underlying Mechanisms
Zi-Ye MENG ; Miao JIANG ; Min GAO ; Zi-Gang ZHAO ; Xiu XU ; Zhen-Ao ZHAO
Progress in Biochemistry and Biophysics 2024;51(8):1822-1833
Acute respiratory distress syndrome (ARDS) is severe respiratory failure in clinical practice, with a mortality rate as high as 40%. Injury of pulmonary endothelial cells and alveolar epithelial cells occurs during ARDS, and pulmonary endothelial injury results in endothelial barrier disruption, which usually occurs before epithelial injury. Especially, when harmful factors enter the blood, such as sepsis and hemorrhagic shock, the pulmonary endothelial cells are affected firstly. The injured endothelial cells may loss cell-to-cell connections and even die. After the endothelial barrier is disrupted, fluid and proteins cross the endothelial barrier, causing interstitial edema. The alveolar epithelium is more resistant to injury, and when the tight barrier of the epithelium is broken, fluids, proteins, neutrophils, and red blood cells in the interstitium enter the alveolar space. From this process, it is easy to find that the endothelium is the first barrier to prevent edema, therefore, the protection of endothelium is the key to the prevention and treatment of ARDS. In addition, the injured endothelial cells express selectin and cell adhesion molecules, promoting the recruitment of immune cells, which exacerbate the inflammatory response and pulmonary endothelial cell injury. Mesenchymal stem cells (MSCs) can be derived from umbilical cord, bone marrow, adipose and so on. Because of low immunogenicity, MSCs can be used for allogeneic transplantation and have great application potential in tissue repairing. Through paracrine effect, MSCs can promote cell survival and balance inflammatory response. MSCs infused intravenously can locate in lungs rapidly and interact with endothelial cells directly, thus MSCs have advantages in protecting pulmonary microvascular endothelial cells. Animal experiments and clinical trials have found that MSC transplantation can significantly improve the symptoms of ARDS and reduce inflammatory reactions and endothelial permeability. Mechanically, MSCs acts mainly through paracrine and immunomodulatory effects. Paracrine cytokines from MSCs can not only promote pulmonary endothelial proliferation, but also reduce inflammatory response and promote cell survival to maintain endothelial integrity. In addition to paracrine cytokines, extracellular vesicles of MSCs are rich in RNAs, proteins and bioactive substances, which can protect pulmonary endothelial cells by intercellular communication and substance transport. Furthermore, MSCs may protect pulmonary endothelial cells indirectly by regulating immune cells, such as reducing the formation of extracellular trapping network of neutrophils, regulating macrophage polarization and regulating Th17/Treg cell balance. Although the beneficial effects of MSCs are verified, much work still needs to be done. MSCs from different tissues have their own characteristics and the scope of application. Different lung diseases possess different endothelial injury mechanisms. Thus, determining the indications of MSCs derived from different tissues is the direction of pulmonary disease clinical trials. From the perspective of transplantation route, intravenous injection of MSCs may have better clinical application in pulmonary endothelial injury caused by endogenous harmful factors in blood. Previous reviews mostly focused on the protective effects of MSCs on alveolar epithelium. In this article, we focused on endothelial cells and reviewed the direct protective effects and mechanisms of MSCs on endothelium through paracrine cytokines and extracellular vesicles, and summarize the mechanisms by which MSCs may indirectly protect pulmonary endothelial cells by regulating immune cells.
9.Regulatory Mechanism of Drug-Containing Serum of Jinghou Zengzhi Prescription on GDF9 Expression and Apoptosis of Ovarian Granulosa Cells in Rats with Controlled Ovarian Hyperstimulation
Zhen YANG ; Xiao-Yan CHEN ; Shao-Ru JIANG ; Shu-Zhu YE ; Xiao-Hong FANG ; Wei-Min DENG ; Xin-Yu GUO
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):735-741
Objective To observe the regulatory mechanism of drug-containing serum of Jinghou Zengzhi Prescription based on qi and blood replenishing method on the expression of growth and differentiation factor 9(GDF9)and apoptosis of ovarian granulosa cells in rats with controlled ovarian hyperstimulation(COH).Methods Serum of COH rats(blank serum)and serum of COH rats gavaged by the Jinghou Zengzhi Prescription were prepared.A COH rat model was established and ovarian granulosa cells were collected.The experiment was divided into 5 groups:blank serum group,drug-containing serum group,drug-containing serum+SB203580[p38 mitogen-activated protein kinase(p38MAPK)inhibitor]group,drug-containing serum + PDTC[nuclear transcription factor κB(NF-κB)inhibitor]group,drug-containing serum + SB203580 + PDTC group.The mRNA expression levels of p38MAPK,casein kinase 2(CK2),nuclear transcription factor κB inhibitor α(IκBα),NF-κB and GDF9 were detected by real-time quantitative polymerase chain reaction(qRT-PCR),and GDF9 protein expression level was detected by Western Blot,and ovarian granulosa cell apoptosis was detected by terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL).Results The drug-containing serum of Jinghou Zengzhi Prescription decreased the mRNA expressions of p38MAPK and NF-κB,elevated the mRNA expressions of CK2 and IκBα,increased the mRNA and protein expression levels of GDF9,and decreased the apoptosis rate of ovarian granulosa cells in COH rats.The addition of p38MAPK inhibitor SB203580 alone and the addition of NF-κB inhibitor PDTC alone both promoted the mRNA and protein expressions of GDF9 and reduced the apoptosis rate of granulosa cells.Conclusion The drug-containing serum of Jinghou Zengzhi Prescription based on qi and blood replenishing method can promote the expression of GDF9 and inhibit the apoptosis of ovarian granulosa cells in rats with COH,and its mechanism may be related to the regulation of the expression of genes of the dual signaling pathways of p38MAPK and NF-κB.
10.Clinical Study on Xingnao Kaiqiao Acupuncture Combined with Acupuncture at Pericardium Meridian Points for the Treatment of Post-stroke Sleep Reversal
Su-Ping DENG ; Jia-Ping WU ; Li-Zhen YE ; Ke-Tao DU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):923-929
Objective To observe the clinical efficacy of Xingnao Kaiqiao Acupuncture(with the functions of awakening the brain and opening the orifices)combined with acupuncture at pericardium meridian points in the treatment of post-stroke sleep reversal(PSSR).Methods Sixty patients with PSSR were randomly divided into observation group and control group,30 patients in each group.Both groups were given conventional treatment,the control group was given oral use of Alprazolam,and the observation group was given the combination of acupuncture a at pericardial meridian points,and 10 days of treatment was one course of treatment.After 10 days of treatment,the clinical efficacy of the two groups was evaluated.The changes in the Pittsburgh Sleep Quality Index(PSQI)and Ascens Insomnia Scale(AIS)scores,as well as the Hamilton Depression Scale(HAMD)scores were observed before and after treatment in the two groups.The changes in cortisol levels at 0,8,and 16 o'clock were compared before and after treatment between the two groups.Results(1)After treatment,the PSQI scores of patients in the two groups were significantly improved(P<0.05),and the observation group was significantly superior to the control group in improving PSQI scores,and the difference was statistically significant(P<0.05).(2)After treatment,the AIS and HAMD scores of patients in the two groups were significantly improved(P<0.05),and the observation group was significantly superior to the control group in improving the AIS and HAMD scores,and the difference was statistically significant(P<0.05).(3)After treatment,the cortisol level of patients in the two groups at 0,8,and 16 o'clock was significantly improved(P<0.05),and the observation group was significantly superior to the control group in improving the cortisol level at 0,8,and 16 o'clock was significantly superior to the control group,and the difference was statistically significant(P<0.05).(4)The total effective rate was 86.67%(26/30)in the observation group and 80.00%(24/30)in the control group.The efficacy of the observation group was slightly superior to that of the control group,but the difference was not statistically significant(P>0.05).Conclusion Xingnao Kaiqiao Acupuncture combined with acupuncture at pericardium meridian points for the treatment of PSSR can significantly improve the clinical symptoms of the patients,so as to improve the quality of life of the patients,and the therapeutic efficacy is remarkable.


Result Analysis
Print
Save
E-mail