1.Notch signaling pathway regulates proliferation and differentiation of mesenchymal stem cells
Xuesong WANG ; Lin ZHOU ; Lincai LI ; Zhengwei ZOU ; Xingkun TANG ; Wenming LU ; Wenjie CHEN ; Yue WANG ; Junsong YE
Chinese Journal of Tissue Engineering Research 2024;28(19):3076-3083
BACKGROUND:It was found that the ligands and receptors of Notch are both cell membrane surface proteins,which are important proteins to mediate intercellular communication,and the Notch signaling pathway plays a crucial regulatory role in the proliferation and differentiation of mesenchymal stem cells. OBJECTIVE:To review the regulatory mechanism of the Notch signaling pathway on the proliferation and differentiation of mesenchymal stem cells,summarize and clarify the research advance in how the Notch signaling pathway regulates the proliferation and differentiation of mesenchymal stem cells,and provide theoretical support for the future use of stem cells to treat various related diseases. METHODS:By using the computer,the first author searched the relevant studies involving Notch signaling pathway regulation of mesenchymal stem cell proliferation and differentiation on CNKI,Wanfang,VIP,PubMed,Web of Science,and Nature databases with Chinese search terms"mesenchymal stem cells,Notch,Notch signaling pathway,proliferation,differentiation"and the English search terms"mesenchymal stem cells,MSC,Notch,Notch signaling pathway,proliferation,differentiation".Part of the literature was searched in combination with the literature tracing method.Finally,87 articles were included in the review analysis. RESULTS AND CONCLUSION:(1)Notch signaling pathway is a conserved signaling pathway in multicellular organisms,which plays an important role in regulating cell differentiation,proliferation,apoptosis,and the cell cycle by mediating communication between neighboring cells through receptor-ligand binding.(2)Mesenchymal stem cells are a class of adult stem cells with self-proliferative and multi-directional differentiation potential,which can be regulated by external signaling pathways to affect their proliferation and differentiation.Notch signaling pathway,as one of them,when Notch ligands are activated,the Notch proteins will undergo two protein hydrolysis cleavages to release Notch intracellular structural domain NICD,which then enters the nucleus and thus promotes the transcription of target genes to regulate the proliferation and differentiation of mesenchymal stem cells from different sources,such as bone marrow,adipose,and umbilical cord.However,the specific mechanisms that regulate the proliferation and differentiation of mesenchymal stem cells from different tissue sources of the same species are different.(3)The Notch signaling pathway can regulate the differentiation of mesenchymal stem cells into different target cells,but due to different target cells,the expression levels of receptors or ligands in the Notch signaling pathway vary.(4)Clinical targeting of the Notch signaling pathway to promote mesenchymal stem cells for the treatment of various refractory diseases,such as aplastic anemia,severe joint injuries,ischemic strokes,and myocardial infarctions,has a promising application.(5)By exploring the Notch signaling pathway via regulating the expression levels of its receptors and ligands in bone marrow mesenchymal stem cells from rat,mouse,and human,it can be found that the Notch signaling pathway expression levels in the proliferation and differentiation of mesenchymal stem cells from different species origins are also different.(6)The role of mesenchymal stem cells in tissue engineering has been gradually highlighted due to their advantages of safety,low immune rejection,and wide therapeutic prospects.The Notch signaling pathway regulates the proliferation and differentiation of mesenchymal stem cells with a wide range of influencing factors,and subsequent studies should further optimize the influencing factor variables and explore the standardized studies of regulating the proliferation and differentiation of mesenchymal stem cells.
2.Improvement effects of Runchang granules on the constipation in mice and its mechanism
Mengqin HUANG ; Xuesong WANG ; Yuhan GAN ; Shiqin LU ; Qiqi DENG ; Qing ZHU ; Jiao GUO
China Pharmacy 2024;35(2):160-165
OBJECTIVE To investigate the improvement effects of Runchang granules on the constipation in mice and its potential mechanism. METHODS The mice were randomly divided into normal control group, model group, Runchang granules low-dose and high-dose groups (5, 10 g/kg), mosapride group (0.003 g/kg, positive control), with 6 mice in each group. The latter 4 groups were given loperamide intragastrically (0.004 g/kg), twice a day, for 3 consecutive days. Normal control group and model group were given purified water intragastrically, and administration groups were given relevant medicine intragastrically for 7 consecutive days. After the last medication, fecal moisture content and intestinal motility of mice were determined, while the structures of colon and ileum, and the secretion of colonic mucus were observed. Protein expressions of tyrosine kinase receptor (c-kit), mucin 2 (MUC2) and stem cell factor (SCF) were determined in colon; meanwhile, the mRNA expression levels of inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)] as well as factors related to promoting intestinal motility [neuronal nitric oxide synthase (nNOS), smooth muscle myosin light chain kinase (smMLCK), 5-hydroxytryptamine 4 receptor (5-HT4R), MUC2, SCF, c-kit] were determined. RESULTS Compared with model group, the fecal water content, intestinal propulsion rate, protein expression of c-kit in colon, relative expressions of MUC2 and SCF protein, and mRNA expressions of factors related to promoting intestinal motility (except for nNOS and SCF in Runchang granules low-dose group) were all increased significantly in Runchang granules low-dose and high-dose groups, and mosapride group (P<0.05 or P<0.01). mRNA expression levels of inflammatory factors were decreased significantly(P<0.05 or P<0.01). Both colon and ileum injuries improved, and the secretion of colon mucus was increased significantly in Runchang granules high-dose group (P<0.01). CONCLUSIONS Runchang granules have laxative effect and can improve constipation in mice, and its mechanism may be related to the promotion of the secretion of colon mucus and MUC2 expression, and the activation of SCF/c-kit signaling pathway.
3.Long-term outcomes of intravascular ultrasound-guided drug-eluting stents implantation in patients with acute coronary syndrome: ULTIMATE ACS subgroup
Xiaofei GAO ; Leng HAN ; Xuesong QIAN ; Zhen GE ; Xiangquan KONG ; Shu LU ; Jing KAN ; Guangfeng ZUO ; Junjie ZHANG ; Shaoliang CHEN
Chinese Journal of Cardiology 2024;52(2):137-143
Objective:To explore the long-term effects of intravascular ultrasound (IVUS) guidance on patients with acute coronary syndrome (ACS) undergoing drug-eluting stents (DES) implantation.Methods:Data used in this study derived from ULTIMATE trial, which was a prospective, multicenter, randomized study. A total of 1 448 all-comer patients were enrolled between 2014 August and 2017 May. Primary endpoint of this study was target vessel failure (TVF) at 3 years, including cardiac death, target-vessel-related myocardial infarction, and clinically-driven target vessel revascularization.Results:ACS was present in 1 136 (78.5%) patients, and 3-year clinical follow-up was available in 1 423 patients (98.3%). TVF in the ACS group was 9.6% (109/1 136), which was significantly higher than 4.5% (14/312) in the non-ACS group (log-rank P=0.005). There were 109 TVFs in the ACS patients, with 7.6% (43/569) TVFs in the IVUS group and 11.6% (66/567) TVFs in the angiography group (log-rank P=0.019). Moreover, patients with optimal IVUS guidance were associated with a lower risk of 3-year TVF compared to those with suboptimal IVUS results (5.4% (16/296) vs. 9.9% (27/273),log-rank P=0.041). Conclusions:This ULTIMATE-ACS subgroup analysis showed that ACS patients undergoing DES implantation were associated with a higher risk of 3-year TVF. More importantly, the risk of TVF could be significantly decreased through IVUS guidance in patients with ACS, especially in those who had an IVUS-defined optimal procedure.
4.Value of AB classification combined with Arima classification for determining the invasion depth of superficial esophageal squamous cell carcinoma
Hongna LU ; Feng XU ; Xuesong ZHANG ; Yao WANG ; Yaohui WANG ; Xi DENG ; Wenying GUO ; Ting WENG ; Liangshun ZHANG ; Tingsheng LING
Chinese Journal of Digestive Endoscopy 2024;41(5):372-378
Objective:To investigate the clinical value of AB classification combined with Arima classification for predicting the invasion depth of superficial esophageal squamous cell carcinomas (SESCC).Methods:From July 2017 to December 2022, 76 cases of SESCC receiving endoscopic submucosal dissection and intra-epithelial papillary capillary loops (IPCL) AB classification as type B2 in Ningbo Medical Center Lihuili Hospital and Jiangsu Province Hospital of Chinese Medicine were included in the study. IPCL was reclassified according to Arima classification. The depth of infiltration determined by pathology was the gold standard. The sensitivity, the specificity, the positive predictive value and the negative predictive value of B2-Arima combined classification in predicting the invasion depth of SESCC were analyzed.Results:In the 76 cases of type B2 IPCL lesions, 31 cases (40.79%) were T1a-MM/T1b-SM1 SESCC. The sensitivity, the specificity, the positive predictive value, the negative predictive value and the diagnostic accuracy of type B2 IPCL to predict T1a-MM/T1b-SM1 SESCC were 70.45% (31/44), 79.64% (176/221), 40.79% (31/76), 93.12% (176/189), and 78.11% (207/265), respectively. After Arima classification, the above corresponding indicators of type B2-4ML and type B2-AVA-4M IPCL in predicting T1a-MM/T1b-SM1 SESCC were 61.36% (27/44), 88.24% (195/221), 50.94% (27/53), 91.98% (195/212), 83.77% (222/265) and 38.64% (17/44), 94.57% (209/221), 58.62% (17/29), 88.56% (209/236), 85.28% (226/265), respectively.Conclusion:B2 IPCL combined with Arima classification can improve the diagnostic accuracy of T1a-MM/T1b-SM1 ESSCC.
5.Research on the application value of natural language processing in the formulation of medical equipment procurement parameters
Xuesong CHE ; Min ZHANG ; Dongsheng LU ; Dayang LIU
China Medical Equipment 2024;21(6):161-166
Objective:To construct an intelligent medical equipment procurement parameter generation system to achieve clear expression of medical equipment procurement parameters formulation and accurate demand matching,and to improve the recognition of bidding results and bidding efficiency.Methods:Based on natural language processing(NLP),web crawler and machine learning methods,an automatic data update mechanism was built to achieve massive procurement parameter data extraction,and the entity recognition method was used for the analysis of past procurement parameter data to realize the automatic extraction of entities such as medical equipment information and parameter names.Based on the similarity device recommendation and medical equipment template derivation method,an intelligent medical equipment procurement parameter generation system was constructed by using a wizard-based interactive tool.The difference between the use of intelligent medical equipment procurement parameter generation system and by 4 four three-year-experienced bidding and procurement personnel in the formulation of 10 medical equipment procurement parameter documents was compared.Results:The average generation time of medical equipment procurement parameter files using the intelligent medical equipment procurement parameter generation system was 15.23 minutes,the average time for of medical equipment procurement parameter files formulated by bidding and procurement personnel was 173.40 minutes.According to the evaluation of bidding procurement experts,the efficiency and quality of the medical equipment procurement parameter file generated by the intelligent medical equipment procurement parameter generation system were better than those formulated by three-year-experienced bidding procurement personnel.Conclusion:The application of intelligent medical equipment procurement parameter generation system to the formulation of medical equipment procurement parameters can achieve professional information collection,storage,and management of medical equipment procurement parameters,shorten the cycle of medical equipment bidding parameter formulation,provide intelligent auxiliary generation tools for medical equipment bidding and procurement practitioners,improve the efficiency of bidding parameter formulation,and enhance the efficiency of medical equipment procurement.
6.Hearing loss and microvascular complications in diabetes
Mingyu LIU ; Jia LI ; Wenbin TAN ; Yongxin LU ; Pengxin ZHANG ; Huang CHEN ; Hongmei LI ; Shuwen LI ; Kaixuan ZHU ; Liu YANG ; Xuesong JIANG ; Jiaqi XI
Chinese Journal of Endocrinology and Metabolism 2024;40(8):654-659
Objective:To investigate the correlation between hearing loss and microvascular complications in diabetes.Methods:This cross-sectional study conducted the data from 572 patients with diabetes hospitalized in the Endocrinology Department of the General Hospital of Southern Theater Command from September 2022 to July 2023. All participants underwent electrical audiometry and acoustic immittance in the ENY department. Based on the audiometric results, participants were categorized into normal hearing group and hearing loss group. Additionally, 572 non-diabetic patients from the outpatient department were enrolled as the non-diabetic group. The general information and laboratory results were collected and compared using t test, rank sum test or χ2 test. Binary logistic regression analysis was used to evaluate the association of diabetic hearing loss with diabetic kidney disease(DKD), diabetic retinopathy (DR), and diabetic peripheral neuropathy (DPN). Results:Among 572 patients with diabetes, 429 suffered from hearing loss and 143 were normal. χ2 test showed significant differences in combined DKD and DPN between two groups, but not in DR. Multivariate binary logistic regression analysis identified DKD and DPN as risk factors for hearing loss, but no correlation was found with DR. Conclusion:Diabetic patients with DKD or DPN should be monitored for potential hearing loss. Early screening and treatment are crucial to prevent severe hearing impairment.
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.

Result Analysis
Print
Save
E-mail