1.Risk factors of malaria infection and risk prediction model research in in labor export in Langfang City
Xuejun ZHANG ; Kun ZHAO ; Jing ZHAO ; ZHUO WANG ; Qiang GUO ; Jie XIAO ; Juanjuan GUO ; Jinhong PENG
Journal of Public Health and Preventive Medicine 2025;36(1):118-122
Objective To analyze the influencing factors of malaria infection of labor service exported to overseas in Langfang City, in order to establish a visualization tool to assist clinicians in predicting the risk of malaria. Methods A total of 4 774 expatriate employees of the Nibei Pipeline Project of the Pipeline Bureau from October 2021 to August 2023 were taken as the subjects, and the gender, age, overseas residence area and Knowledge of malaria controlscores of the study subjects were investigated by questionnaire survey, and the possible risk factors of malaria were screened by logistic regression model. At the same time, the nomogram prediction model was established, and the subjects were divided into the training group and the validation group at a ratio of 2:1, and the area under the curve (ROC) and the decision curve were plotted to evaluate the prediction ability and practicability of the prediction model in this study. Results Among the 4 774 study subjects, 96 cases of malaria occurred, and the detection rate was 2.01%. Junior school (OR=1.723,95% CI:1.361-2.173), and residence in rural areas(OR=2.091,95%CI:1.760 -3.100)were risk factors (OR>1), while protective measures(OR=0.826,95% CI : 0.781 - 0.901) and high malaria education scores (OR=0.872,95% CI : 0.621 - 0.899)were protective factors.The nomogram prediction model results showed that the area under the curve of the nomogram prediction model in the training group was 0.94 (95% CI : 0.85 - 1.00), while the validation group was 0.93 (95% CI : 0.80 - 1.00). The results of the decision curve showed that when the threshold probability of the population was 0-0.9, the nomogram model was used to predict the risk of malaria occurrence with the highest net income. Conclusion The nomogram prediction model (including gender, education, region, protection and malaria education score) established and validated in this study is of great value for clinicians to screen high-risk patients with malaria.
3.Protective effect of exercise induced metabolite-3 in ischemia-reperfusion injury
Zijie CHENG ; Xuejun WANG ; Zimu WANG ; Juying QIAN
Chinese Journal of Clinical Medicine 2025;32(3):403-409
Objective To explore the protective effect of exercise-induced metabolite-3 (EIM-3) on myocardial ischemia-reperfusion (I/R) injury and explore its underlying molecular mechanisms. Methods The physicochemical properties and half-life of EIM-3 were analyzed using the Human Metabolome Database (HMDB, https://hmdb.ca/). A primary rat cardiomyocyte hypoxia/reoxygenation (H/R) injury model was established. Cell apoptosis and viability were assessed using TUNEL assay and cell counting kit-8, respectively. Lactate dehydrogenase (LDH) levels in the cell culture supernatant were measured. Intracellular reactive oxygen species (ROS) levels were detected. Transcriptomic analysis was performed to identify potential signaling pathways and targets of EIM-3. Results Plasma levels of EIM-3 were elevated post-exercise. EIM-3 was characterized as a phospholipid small-molecule compound with a partition coefficient (logP) of 5.58 and a solubility (logS) of −7.6, indicating favorable lipophilicity and cell membrane permeability. In cardiomyocytes H/R injury modles, EIM-3 significantly inhibited apoptosis, increased cell viability, reduced intracellular ROS levels, and decreased LDH release (P<0.01). Transcriptomic analysis suggested that EIM-3 exerts its protective function potentially by regulating glucose metabolim. Quantitative real-time polymerase chain reaction results confirmed that EIM-3 significantly upregulated the transcriptional level of pyruvate kinase M2 (PKM2) in a dose-dependent manner (P<0.001). Conclusions EIM-3 protects cardiomyocytes against I/R injury by modulating glucose metabolim. This study provides foundational insights into the mechanisms underlying exercise-induced cardioprotection.
4.The role of circadian rhythm and its new strategies for prevention and treatment in oral diseases
WANG Yajun ; ZHANG Lin ; CHENG Chen ; XING Wenmin ; GE Xuejun ; CHENG Fengli ; ZHANG Fang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(11):986-996
Circadian rhythm is a biological endogenous process regulated by the suprachiasmatic nucleus of the hypothalamus, which transmits light signals to peripheral clocks and synchronizes the body with the external environment through balanced expression of circadian rhythm genes. Working the night shift, sleep disorders, and exposure to artificial light can lead to disturbances in circadian rhythm and genetic imbalances. A substantial body of research has demonstrated that circadian rhythm plays a significant role in the treatment of autoimmune diseases and neurodegenerative disorders, with increasing attention being directed toward their impact on oral health. Disturbances in circadian rhythm primarily affect psycho-neuro-immune mechanisms, oxidative stress responses, and oral microflora through pathways such as the hypothalamic-pituitary-adrenal axis (HPA axis), brain and muscle ARNT-like 1 (BMAL1)-brain-derived neurotrophic factor (BDNF) signaling, and BMAL1-nuclear factor kappa-B (NF-κB) interactions. These disruptions may influence the progression of oral diseases. Certain pharmacological agents (e.g., melatonin, vitamin D, nobiletin, and propofol) have been shown to regulate mood disorders, immune function, and sleep-wake cycles by upregulating BMAL1 expression, thus alleviating disturbances in circadian rhythm. In addition, non-pharmacological interventions, such as sleep management strategies, psychotherapy approaches, and light therapy, also modulate these processes through HPA axis regulation. Currently, the specific mechanisms by which circadian rhythm regulates BDNF levels, T cell subsets, and inflammatory signals—thereby influencing both pathogenesis and treatment outcomes for oral diseases—remain unclear. Future research should focus on elucidating these molecular mechanisms as well as identifying therapeutic targets related to circadian rhythm within the oral health context. Further, multidisciplinary collaboration encompassing pharmacy, sleep behavior studies, and psychology will be instrumental in advancing prevention strategies and treatments for oral diseases.
5.Efficacy and safety of secukinumab in Chinese patients with psoriasis: Update of six-year real-world data and a meta-analysis.
He HUANG ; Yaohua ZHANG ; Caihong ZHU ; Zhengwei ZHU ; Yujun SHENG ; Min LI ; Huayang TANG ; Jinping GAO ; Dawei DUAN ; Hequn HUANG ; Weiran LI ; Tingting ZHU ; Yantao DING ; Wenjun WANG ; Yang LI ; Xianfa TANG ; Liangdan SUN ; Yanhua LIANG ; Xuejun ZHANG ; Yong CUI ; Bo ZHANG
Chinese Medical Journal 2025;138(23):3198-3200
6.Two cases of complex traumatic aortic dissection combined with multiple organ injuries.
Qingpeng SONG ; Lili BAO ; Xuejun WU ; Bingqi LIU ; Maohua WANG
Chinese Journal of Traumatology 2025;28(1):29-34
Traumatic aortic injury (TAI) is an acute, critical, and severe disease, and then combined with multiple organ damage, it is even more dangerous. TAI progresses very rapidly, with a pre-hospital mortality rate of 57%-80%, and even when arriving at the hospital, more than one-third of the patients die within 4 h, and it is the 2nd leading cause of death in individuals aged 4-34 years. In addition, the incidence of TAI combined with injury was 81.4%. Therefore, early diagnosis, expeditious surgery, and timely and effective multidisciplinary cooperation are essential for successful rescue. The authors report 2 patients with acute traumatic aortic dissection combined with multiple organ injuries and treated with emergency endovascular surgery to discuss their clinical characteristics and treatment experience, and to provide experience in the diagnosis and treatment of such patients.
Humans
;
Aortic Dissection/surgery*
;
Endovascular Procedures
;
Multiple Trauma/surgery*
7.Safety, dosimetry, and efficacy of an optimized long-acting somatostatin analog for peptide receptor radionuclide therapy in metastatic neuroendocrine tumors: From preclinical testing to first-in-human study.
Wei GUO ; Xuejun WEN ; Yuhang CHEN ; Tianzhi ZHAO ; Jia LIU ; Yucen TAO ; Hao FU ; Hongjian WANG ; Weizhi XU ; Yizhen PANG ; Liang ZHAO ; Jingxiong HUANG ; Pengfei XU ; Zhide GUO ; Weibing MIAO ; Jingjing ZHANG ; Xiaoyuan CHEN ; Haojun CHEN
Acta Pharmaceutica Sinica B 2025;15(2):707-721
Peptide receptor radionuclide therapy (PRRT) with radiolabeled SSTR2 agonists is a treatment option that is highly effective in controlling metastatic and progressive neuroendocrine tumors (NETs). Previous studies have shown that an SSTR2 agonist combined with albumin binding moiety Evans blue (denoted as 177Lu-EB-TATE) is characterized by a higher tumor uptake and residence time in preclinical models and in patients with metastatic NETs. This study aimed to enhance the in vivo stability, pharmacokinetics, and pharmacodynamics of 177Lu-EB-TATE by replacing the maleimide-thiol group with a polyethylene glycol chain, resulting in a novel EB conjugated SSTR2-targeting radiopharmaceutical, 177Lu-LNC1010, for PRRT. In preclinical studies, 177Lu-LNC1010 exhibited good stability and SSTR2-binding affinity in AR42J tumor cells and enhanced uptake and prolonged retention in AR42J tumor xenografts. Thereafter, we presented the first-in-human dose escalation study of 177Lu-LNC1010 in patients with advanced/metastatic NETs. 177Lu-LNC1010 was well-tolerated by all patients, with minor adverse effects, and exhibited significant uptake and prolonged retention in tumor lesions, with higher tumor radiation doses than those of 177Lu-EB-TATE. Preliminary PRRT efficacy results showed an 83% disease control rate and a 42% overall response rate after two 177Lu-LNC1010 treatment cycles. These encouraging findings warrant further investigations through multicenter, prospective, and randomized controlled trials.
8.Ablation of macrophage transcriptional factor FoxO1 protects against ischemia-reperfusion injury-induced acute kidney injury.
Yao HE ; Xue YANG ; Chenyu ZHANG ; Min DENG ; Bin TU ; Qian LIU ; Jiaying CAI ; Ying ZHANG ; Li SU ; Zhiwen YANG ; Hongfeng XU ; Zhongyuan ZHENG ; Qun MA ; Xi WANG ; Xuejun LI ; Linlin LI ; Long ZHANG ; Yongzhuo HUANG ; Lu TIE
Acta Pharmaceutica Sinica B 2025;15(6):3107-3124
Acute kidney injury (AKI) has high morbidity and mortality, but effective clinical drugs and management are lacking. Previous studies have suggested that macrophages play a crucial role in the inflammatory response to AKI and may serve as potential therapeutic targets. Emerging evidence has highlighted the importance of forkhead box protein O1 (FoxO1) in mediating macrophage activation and polarization in various diseases, but the specific mechanisms by which FoxO1 regulates macrophages during AKI remain unclear. The present study aimed to investigate the role of FoxO1 in macrophages in the pathogenesis of AKI. We observed a significant upregulation of FoxO1 in kidney macrophages following ischemia-reperfusion (I/R) injury. Additionally, our findings demonstrated that the administration of FoxO1 inhibitor AS1842856-encapsulated liposome (AS-Lipo), mainly acting on macrophages, effectively mitigated renal injury induced by I/R injury in mice. By generating myeloid-specific FoxO1-knockout mice, we further observed that the deficiency of FoxO1 in myeloid cells protected against I/R injury-induced AKI. Furthermore, our study provided evidence of FoxO1's pivotal role in macrophage chemotaxis, inflammation, and migration. Moreover, the impact of FoxO1 on the regulation of macrophage migration was mediated through RhoA guanine nucleotide exchange factor 1 (ARHGEF1), indicating that ARHGEF1 may serve as a potential intermediary between FoxO1 and the activity of the RhoA pathway. Consequently, our findings propose that FoxO1 plays a crucial role as a mediator and biomarker in the context of AKI. Targeting macrophage FoxO1 pharmacologically could potentially offer a promising therapeutic approach for AKI.
9.Expert consensus on intentional tooth replantation.
Zhengmei LIN ; Dingming HUANG ; Shuheng HUANG ; Zhi CHEN ; Qing YU ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Jiyao LI ; Xiaoyan WANG ; Zhengwei HUANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Lan ZHANG ; Jin ZHANG ; Xiaoli XIE ; Jinpu CHU ; Kehua QUE ; Xuejun GE ; Xiaojing HUANG ; Zhe MA ; Lin YUE ; Xuedong ZHOU ; Junqi LING
International Journal of Oral Science 2025;17(1):16-16
Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
Humans
;
Tooth Replantation/methods*
;
Consensus
;
Periapical Periodontitis/surgery*
10.An efficient assembly method for a viral genome based on T7 endonuclease Ⅰ-mediated error correction.
Xuwei ZHANG ; Bin WEN ; Fei WANG ; Xuejun WANG ; Liyan LIU ; Shumei WANG ; Shengqi WANG
Chinese Journal of Biotechnology 2025;41(1):385-396
Gene synthesis is an enabling technology that supports the development of synthetic biology. The existing approaches for de novo gene synthesis generally have tedious operation, low efficiency, high error rates, and limited product lengths, being difficult to support the huge demand of synthetic biology. The assembly and error correction are the keys in gene synthesis. This study first designed the oligonucleotide sequences by reasonably splitting the virus genome of approximately 10 kb by balancing the parameters of sequence design software ability, PCR amplification ability, and assembly enzyme assembly ability. Then, two-step PCR was performed with high-fidelity polymerase to complete the de novo synthesis of 3.0 kb DNA fragments, and error correction reactions were performed with T7 endonuclease Ⅰ for the products from different stages of PCR. Finally, the virus genome was assembled by 3.0 kb DNA fragments from de novo synthesis and error correction and then sequenced. The experimental results showed that the proposed method successfully produced the DNA fragment of about 10 kb and reduced the probability of large fragment mutations during the assembly process, with the lowest error rate reaching 0.36 errors/kb. In summary, this study developed an efficient de novo method for synthesizing a viral genome of about 10 kb with T7 endonuclease Ⅰ-mediated error correction. This method enabled the synthesis of a 10 kb viral genome in one day and the correct plasmid of the viral genome in five days. This study optimized the de novo gene synthesis process, reduced the error rate, simplified the synthesis and assembly steps, and reduced the cost of viral genome assembly.
Genome, Viral/genetics*
;
Polymerase Chain Reaction/methods*
;
DNA, Viral/genetics*
;
Bacteriophage T7/enzymology*
;
Synthetic Biology/methods*


Result Analysis
Print
Save
E-mail