1.Yishen Tongluo Prescription Ameliorates Oxidative Stress Injury in Mouse Model of Diabetic Kidney Disease via Nrf2/HO-1/NQO1 Signaling Pathway
Yifei ZHANG ; Xuehui BAI ; Zijing CAO ; Zeyu ZHANG ; Jingyi TANG ; Junyu XI ; Shujiao ZHANG ; Shuaixing ZHANG ; Yiran XIE ; Yuqi WU ; Zhongjie LIU ; Weijing LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):41-51
ObjectiveTo investigate the effect and mechanism of Yishen Tongluo prescription in protecting mice from oxidative stress injury in diabetic kidney disease (DKD) via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) signaling pathway. MethodsSpecific pathogen-free (SPF) male C57BL/6 mice were assigned into a control group (n=10) and a modeling group (n=50). The DKD model was established by intraperitoneal injection of streptozotocin. The mice in the modeling group were randomized into a model group, a semaglutide (40 μg·kg-1) group, and high-, medium-, and low-dose (18.2, 9.1, 4.55 g·kg-1, respectively) Yishen Tongluo prescription groups, with 10 mice in each group. The treatment lasted for 12 weeks. Blood glucose and 24-h urine protein levels were measured, and the kidney index (KI) was calculated. Serum levels of creatinine (SCr), blood urea nitrogen (BUN), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were assessed. The pathological changes in the renal tissue were evaluated by hematoxylin-eosin, periodic acid-Schiff, periodic acid-silver methenamine, and Masson’s trichrome staining. Enzyme-linked immunosorbent assay kits were used to measure the levels of β2-microglobulin (β2-MG), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver fatty acid-binding protein (L-FABP), nitric oxide synthase (NOS), glutathione (GSH), total antioxidant capacity (T-AOC), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Immunohistochemical staining was performed to examine the expression of Kelch-like ECH-associated protein 1 (Keap1) and malondialdehyde (MDA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of factors in the Nrf2/HO-1/NQO1 signaling pathway. ResultsCompared with the control group, the DKD model group showed rises in blood glucose, 24-h urine protein, KI, SCr, BUN, and ALT levels, along with glomerular hypertrophy, renal tubular dilation, thickened basement membrane, mesangial expansion, and collagen deposition. Additionally, the model group showed elevated levels of β2-MG, NGAL, KIM-1, L-FABP, NOS, and 8-OHdG, lowered levels of GSH and T-AOC, up-regulated expression of MDA and Keap1, and down-regulated expression of Nrf2, HO-1, NQO1, and glutamate-cysteine ligase catalytic subunit (GCLC) (P<0.05). Compared with the model group, the semaglutide group and the medium- and high-dose Yishen Tongluo prescription groups showed reductions in blood glucose, 24-h urine protein, KI, SCr, BUN, and ALT levels, along with alleviated pathological injuries in the renal tissue. In addition, the three groups showed lowered levels of β2-MG, NGAL, KIM-1, L-FABP, NOS, and 8-OHdG, elevated levels of GSH and T-AOC, down-regulated expression of MDA and Keap1, and up-regulated expression of Nrf2, HO-1, NQO1, and GCLC (P<0.05). ConclusionYishen Tongluo prescription exerts renoprotective effects in the mouse model of DKD by modulating the Nrf2/HO-1/NQO1 signaling pathway, mitigating oxidative stress, and reducing renal tubular injuries.
2.Mechanism of Yishen Tongluo Formula regulating the TLR4/MyD88/NF-κB signaling pathway to ameliorate pyroptosis in diabetic nephropathy mice
Yifei ZHANG ; Zijing CAO ; Zeyu ZHANG ; Xuehui BAI ; Jingyi TANG ; Junyu XI ; Jiayi WANG ; Yiran XIE ; Yuqi WU ; Xi GUO ; Zhongjie LIU ; Weijing LIU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):21-33
Objective:
To investigate the mechanism of Yishen Tongluo Formula in ameliorating renal pyroptosis in diabetic nephropathy mice by regulating the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway.
Methods:
Sixty C57BL/6 male mice were randomly divided into control (10 mice) and intervention groups (50 mice) using random number table method. The diabetes nephropathy model was established by intraperitoneally injecting streptozotocin(50 mg/kg). After modeling, the intervention group was further divided into model, semaglutide (40 μg/kg), and high-, medium-, and low-dose Yishen Tongluo Formula groups (15.6, 7.8, and 3.9 g/kg, respectively) using random number table method. The high-, medium-, and low-dose Yishen Tongluo Formula groups were administered corresponding doses of medication by gavage, the semaglutide group received a subcutaneous injection of semaglutide injection, and the control group and model groups were administered distilled water by gavage for 12 consecutive weeks. Random blood glucose levels of mice in each group were monitored, and the 24-h urinary protein content was measured using biochemical method every 4 weeks; after treatment, the serum creatinine and urea nitrogen levels were measured using biochemical method. The weight of the kidneys was measured, and the renal index was calculated. Hematoxylin and eosin, periodic acid-Schiff, periodic Schiff-methenamine, and Masson staining were used to observe the pathological changes in renal tissue. An enzyme-linked immunosorbent assay was used to detect urinary β2-microglobulin (β2-MG), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) levels. Western blotting and real-time fluorescence PCR were used to detect the relative protein and mRNA expression levels of nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3), Caspase-1, gasdermin D (GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18) in renal tissue. Immunohistochemistry was used to detect the proportion of protein staining area of the TLR4, MyD88, and NF-κB in renal tissue.
Results:
Compared with the control group, the random blood glucose, 24-h urinary protein, serum creatinine, urea nitrogen, and renal index of the model group increased, and the urine β2-MG, NGAL, and KIM-1 levels increased. The relative protein and mRNA expression levels of NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18 in renal tissue increased, and the proportion of TLR4, MyD88, and NF-κB protein positive staining areas increased (P<0.05). Pathological changes such as glomerular hypertrophy were observed in the renal tissue of the model group. Compared with the model group, the Yishen Tongluo Formula high-dose group showed a decrease in random blood glucose after 12 weeks of treatment (P<0.05). The Yishen Tongluo Formula high- and medium-dose groups showed a decrease in 24-h urinary protein, creatinine, urea nitrogen, and renal index, as well as decreased β2-MG, NGAL, and KIM-1 levels. NLRP3, Caspase-1, GSDMD, IL-1 β, and IL-18 relative protein and mRNA expression levels were also reduced, and the proportion of TLR4, MyD88, and NF-κB protein positive staining areas was reduced (P<0.05). Pathological damage to renal tissue was ameliorated.
Conclusion
Yishen Tongluo Formula may exert protective renal effects by inhibiting renal pyroptosis and alleviating tubular interstitial injury in diabetic nephropathy mice by regulating the TLR4/MyD88/NF-κB signaling pathway.
3.Application of Quality Evaluation of Blind Method in Clinical Trials of Traditional Chinese Medicine
Zeyang SHI ; Yuan SUN ; Wenxin MA ; Yuyi WANG ; Zhijun BU ; Xuehui WANG ; Youyou ZHENG ; Jianping LIU ; Zhaolan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):75-80
The quality evaluation of the blind method is to evaluate the clinical blind data obtained from clinical trials adopting the blind method and judge the effectiveness of the blind method by investigating the blind effect of different blind objects. A successful blind method can avoid the influence of subjective factors on the test results of subjects and researchers to a certain extent. The quality evaluation of the blind method can reflect not only the effectiveness of the blind method but also the accuracy and credibility of clinical trial results. In recent years, randomized controlled trials have been widely used in the evaluation of the clinical efficacy of traditional Chinese medicine (TCM), but the quality of the implementation of blind methods is uneven, and the evaluation criteria have not yet been formed. In this paper, the data collection methods, calculation principles, advantages, and disadvantages of two quantitative quality evaluation methods of blind methods, namely James Blinding Index (JBI) and Bang Blinding Index (BBI), were introduced. The two indexes were analyzed in a randomized controlled trial of acupuncture and moxibustion to relieve postoperative oral pain. The calculation process of the results was demonstrated by R software and visualized by forest map. At the same time, a tool table was designed to facilitate the collection of evaluation data of blind methods in TCM clinical trials at different stages. Finally, the necessity and feasibility of quality evaluation of blind method in TCM research were discussed to provide a basis for evaluating and improving the quality of blind method implementation in TCM clinical trials.
4.Pathogenesis of Diabetes from Theory of Spleen Deficiency Causing Diabetes Based on Intestinal Innate Immunity
Linyue ZHOU ; Xuehui LIU ; Yan LIU ; Chunguang XIE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):183-189
In western medicine, the small intestine anatomically belongs to the digestive system and is also an important immune organ of the body. The innate immune system of the small intestine consists of a tissue barrier, innate immune cells, and innate immune molecules. The dysfunction of any part can cause metabolic disorders and eventually lead to diabetes. In the pathogenesis of diabetes, traditional Chinese medicine (TCM) has the theory of ''spleen deficiency causing diabetes'', which points out that the impaired spleen function results in inadequate transformation, impaired essence spread, and turbidity by essence accumulation, which is the core pathological link of blood glucose metabolism disorder in diabetes. In terms of the relationship between the small intestine and the spleen, the theory of TCM holds that the small intestine is located in the abdomen and the abdomen is dominated by the spleen. The digestion, absorption, and endocrine functions of the small intestine are also similar to the functions of spleen in governing movement and transformation and spreading essence by virtue of spleen Qi. Therefore, the anatomical and physiological functions of the small intestine in western medicine are closely related to the spleen in TCM. At the same time, the spleen is closely related to the innate immune function of the small intestine in TCM. The spleen participates in the generation and distribution of defense Qi, and the process of defense Qi playing the external function is similar to the process of the activation of the innate immune response. The spleen is also an important organ involved in fluid metabolism, which can cooperate with the lung and kidney to timely remove turbid fluid from the body. It can also work with the stomach as the hub of Qi ascending and descending and regulate the physiological activities of "clear Yang" and "turbid Yin", so as to ensure the homeostasis of the internal environment of the body, which is the basis for maintaining the normal function of the innate immunity of the small intestine. Therefore, taking "spleen deficiency causing diabetes" as a bridge, the theory of TCM and western medicine were combined to explain the relationship between small intestinal innate immunity imbalance and the pathogenesis of diabetes from the perspective of TCM, which is helpful to understand the pathogenesis of diabetes in a deeper level and also provide a new perspective and new way for the prevention and treatment of this disease with TCM.
5.Randomized Controlled Trial Design Based on Patient Cohorts: Methods and Applications of Trials Within Cohorts
Yuyi WANG ; Zeyang SHI ; Kecheng LI ; Zhijun BU ; Xuehui WANG ; Bin WANG ; Jianping LIU ; Zhaolan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):96-102
Trials within cohorts (TwiCs) are design methods derived from randomized controlled trials (RCTS). They have been widely used in chronic disease areas such as tumors and cardiovascular diseases. The basis of the TwiCs design is a prospective cohort of specific diseases. When RCTS need to be implemented, some patients meeting the inclusion and exclusion criteria are randomly sampled from the cohort to receive "trial interventions", while the remaining patients in the cohort who meet the inclusion and exclusion criteria continue to receive conventional treatment as control groups. By comparing the efficacy differences between the intervention measures of the trial group and the control group, the efficacy of intervention measures was evaluated. Within the cohort, the same process could be repeated to carry out multiple RCTS, so as to evaluate different intervention measures or compare the efficacy of different doses or timing of interventions. Compared with classical RCTS, TwiCs make it easier to recruit patients from the cohort and have higher external validity, providing a new research paradigm for improving the efficiency and applicability of RCTS in clinical practice. However, TwiCs may also face the challenge of poor compliance of patients in the cohort. Researchers need to take effective measures to control these patients in the design and operation of TwiCs. This article focused on the methodological key points during the implementation of TwiCs, including multi-stage informed consent (patients are informed of consent at three stages: entering the cohort, entering the trial group, and after the trial), randomization procedures (only random sampling of patients from the cohort to receive "trial interventions"), sample size calculation, and statistical analysis methods. The article also compared the differences between TwiCs and traditional RCTS and illustrated TwiCs research design and analysis with examples, so as to provide new research ideas and methods for clinical researchers.
6.Bionic design,preparation and clinical translation of oral hard tissue restorative materials
Han ZHAO ; Yan WEI ; Xuehui ZHANG ; Xiaoping YANG ; Qing CAI ; Chengyun NING ; Mingming XU ; Wenwen LIU ; Ying HUANG ; Ying HE ; Yaru GUO ; Shengjie JIANG ; Yunyang BAI ; Yujia WU ; Yusi GUO ; Xiaona ZHENG ; Wenjing LI ; Xuliang DENG
Journal of Peking University(Health Sciences) 2024;56(1):4-8
Oral diseases concern almost every individual and are a serious health risk to the popula-tion.The restorative treatment of tooth and jaw defects is an important means to achieve oral function and support the appearance of the contour.Based on the principle of"learning from the nature",Deng Xu-liang's group of Peking University School and Hospital of Stomatology has proposed a new concept of"microstructural biomimetic design and tissue adaptation of tooth/jaw materials"to address the worldwide problems of difficulty in treating dentine hypersensitivity,poor prognosis of restoration of tooth defects,and vertical bone augmentation of alveolar bone after tooth loss.The group has broken through the bottle-neck of multi-stage biomimetic technology from the design of microscopic features to the enhancement of macroscopic effects,and invented key technologies such as crystalline/amorphous multi-level assembly,ion-transportation blocking,and multi-physical properties of the micro-environment reconstruction,etc.The group also pioneered the cationic-hydrogel desensitizer,digital stump and core integrated restora-tions,and developed new crown and bridge restorative materials,gradient functionalisation guided tissue regeneration membrane,and electrically responsive alveolar bone augmentation restorative membranes,etc.These products have established new clinical strategies for tooth/jaw defect repair and achieved inno-vative results.In conclusion,the research results of our group have strongly supported the theoretical im-provement of stomatology,developed the technical system of oral hard tissue restoration,innovated the clinical treatment strategy,and led the progress of the stomatology industry.
7.Experimental Study on Regulation of Nrf2/HO-1 by Linalool to Inhibit Hepatic Injury Induced by Aflatoxin B1
Meng WANG ; Chunmiao XUE ; Xin HUANG ; Wenhui LIU ; Ruoyu GAO ; Xuehui BAI ; Guodong HUA ; Baochen ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):89-96
ObjectiveTo investigate the effect of linalool against acute liver injury induced by aflatoxin B1(AFB1) in rats and explore its protective mechanism. MethodTwenty male SPF SD rats were randomly divided into three groups: Control (n=6), AFB1 (n=7), and linalool (n=7) groups. Linalool solution (200 mg·kg-1) was administered preventatively for 14 days, while the control and AFB1 groups intragastrically received an equivalent volume of double distilled water. After preventative administration of linalool, AFB1 solution (1 mg·kg-1, dissolved in saline) was intraperitoneally injected for two consecutive days to induce acute liver injury in rats. Samples were collected and processed 14 days after model establishment. Pathological changes in liver tissue of rats were observed using Hematoxylin-eosin(HE) staining and Masson staining. Biochemical detection was performed to measure the levels of alanine transaminase(ALT), aspartate transaminase(AST), γ-glutamyl transferase(GGT), lactate dehydrogenase(LDH), alkaline phosphatase(ALP), total bilirubin(TBil), direct bilirubin(DBil), indirect bilirubin(IBil), malondialdehyde(MDA), superoxidedismutase(SOD), catalase(CAT) , glutathione(GSH), Fe3+, and Fe2+ in the liver tissue. Western blot was adopted to assess protein expression levels of nuclear factor-erythroid 2-related factor 2(Nrf2) and heme oxygenase-1(HO-1). Molecular docking was performed to verify the binding between linalool and key proteins of the Nrf2/HO-1 signaling pathway. Molecular dynamics techniques were used to confirm the stability and affinity of linalool binding with key proteins of the Nrf2/HO-1 signaling pathway. ResultPathological results showed that compared to that in the AFB1 group, the liver structure in the linalool group tended to be normal, with a significant decrease in blue collagen fibers. The linalool group exhibited significantly reduced levels of ALT, AST, GGT, LDH, ALP, TBil, DBil, and IBil (P<0.01), Fe3+ and Fe2+ content, and oxidative stress marker MDA (P<0.01). The levels of antioxidants SOD, CAT, and GSH significantly increased (P<0.01). Molecular docking showed a molecular docking energy between linalool and Nrf2 and HO-1 targets of -5.495 6 and -5.199 4 kcal·mol-1(1 cal≈4.186 J), respectively. Molecular dynamics results indicated strong affinity in the binding of linalool with Nrf2 and HO-1. Western blot revealed a significant increase in Nrf2 protein expression (P<0.05) and a decrease in HO-1 protein expression (P<0.01) in the linalool group. ConclusionLinalool may protect against AFB1-induced acute liver injury by modulating the Nrf2/HO-1 ferroptosis signaling pathway to inhibit liver cell ferroptosis and regulate hepatic oxidative stress levels.
8.Vitamin D3 attenuates high-glucose exposure-induced oxidative stress to promote osteogenic differentiation of human umbilical cord mesenchymal stem cells
Ting XIE ; Tingting LIU ; Xuehui ZENG ; Yamin LI ; Panghu ZHOU ; Nianhua YI
Chinese Journal of Tissue Engineering Research 2024;28(19):2981-2987
BACKGROUND:Diabetic osteoporosis is gaining public attention.However,few studies have reported the effect of a high-glucose environment on the osteogenic differentiation of human umbilical cord mesenchymal stem cells and the corresponding therapeutic strategies. OBJECTIVE:To investigate whether vitamin D3 can restore the osteogenic differentiation potential of human umbilical cord mesenchymal stem cells in a high-glucose environment. METHODS:The viability of human umbilical cord mesenchymal stem cells was detected by CCK-8 assay to screen the appropriate vitamin D3 intervention concentration.Under the high-glucose environment,RT-qPCR,western blot assay,immunofluorescence,JC-1 mitochondrial membrane potential,alizarin red staining,and β-galactosidase staining were used to evaluate the osteogenic differentiation potential,intracellular reactive oxygen species accumulation,mitochondrial membrane potential alteration,and cell senescence of human umbilical cord mesenchymal stem cells after vitamin D3 intervention.The underlying mechanism was also discussed. RESULTS AND CONCLUSION:(1)Vitamin D3 significantly promoted the proliferation of human umbilical cord mesenchymal stem cells in the range of 0.1 μmol/L to 1 mmol/L.(2)High-glucose environment down-regulated the mRNA and protein level expressions of osteogenic-related genes α1-I collagen,alkaline phosphatase,Runt-associated transcription factor 2,and osteocalcin in human umbilical cord mesenchymal stem cells,which induced oxidative stress and cellular senescence.(3)Vitamin D3 at an intervention concentration of 10 μmol/L significantly restored the osteogenic phenotype of human umbilical cord mesenchymal stem cells under high-glucose conditions and attenuated intracellular oxidative stress and cellular senescence by activating the Nrf2/HO-1 signaling pathway.(4)These findings suggested that the osteogenic differentiation ability of human umbilical cord mesenchymal stem cells was reduced in the high-glucose environment,and vitamin D3 could partially improve their osteogenic differentiation ability and reduce cell damage.
9.Fucoxanthin alleviates glucocorticoid-induced osteoblast apoptosis by activating nuclear factor erythroid-2-related factor 2
Ting XIE ; Tingting LIU ; Xuehui ZENG ; Yamin LI ; Panghu ZHOU ; Nianhua YI
Chinese Journal of Tissue Engineering Research 2024;28(23):3609-3614
BACKGROUND:Osteoporosis has a high incidence,leading to fracture and other complications.However,existing drugs have great side effects and are difficult to meet the clinical application. OBJECTIVE:To explore the effect and potential mechanism of fucoxanthin on osteoporosis induced by glucocorticoid. METHODS:Primary rat osteoblasts were inoculated in 6-well plates.When the cell fusion reached 80%,the cells were divided into four groups:the control group was cultured alone for 24 hours,the glucocorticoid group was intervened with dexamethasone for 24 hours,the fucoxanthin group was intervened with fucoxanthin for 24 hours,and the glucocorticoid + fucoxanthin group was intervened with dexamethasone and fucoxanthin at the same time for 24 hours.After intervention,cell proliferation,apoptosis,intracellular reactive oxygen species level,and protein expression of apoptosis-related proteins,bone formation-related proteins,and nuclear factor erythroid-2-related factor 2 were detected. RESULTS AND CONCLUSION:Cell counting kit-8 results showed that the cell viability was decreased in the glucocorticoid group compared with the control group(P<0.05)but increased in the glucocorticoid+fucoxanthin group compared with the glucocorticoid group(P<0.05).JC-1 mitochondrial membrane potential staining and flow cytometry assay showed that the percentage of apoptosis increased in the glucocorticoid group compared with the control group(P<0.05)but decreased in the glucocorticoid+fucoxanthin group compared with the glucocorticoid group(P<0.05).Western blot assay showed that compared with the control group,the protein expression of BAX and cleaved poly(ADP-ribose)polymerase was elevated in the glucocorticoid group(P<0.05),and the protein expression of BCL2,type Ⅰ collagen α1 peptide chain,alkaline phosphatase,osteocalcin,and RUNX2 was decreased in the glucocorticoid group(P<0.05).Compared with the glucocorticoid group,the protein expression of BAX and cleaved poly(ADP-ribose)polymerase was decreased(P<0.05),and the protein expression of BCL2,type Ⅰ collagen α1 peptide chain,alkaline phosphatase,osteocalcin,and RUNX2 was elevated(P<0.05)in the glucocorticoid+fucoxanthin group.Fluorescent probe assay showed an increase in reactive oxygen species level in the glucocorticoid group compared with the control group(P<0.05)and a decrease in reactive oxygen species level in the glucocorticoid+fucoxanthin group compared with the glucocorticoid group(P<0.05).Immunofluorescence staining and western blot assay showed that the protein expression of nuclear factor erythroid-2-related factor 2 in the glucocorticoid group was decreased compared with that in the control group(P<0.05);and the protein expression of nuclear factor erythroid-2-related factor 2 in the glucocorticoid+fucoxanthin group was elevated compared with that in the glucocorticoid group(P<0.05).To conclude,fucoxanthin can improve glucocorticoid-induced osteoblast apoptosis and the expression of bone formation-related molecules by activating nuclear factor erythroid-2-related factor 2.
10.Correlation and diagnostic value analysis of VEGF, RDW and myocardial damage in children with severe mycoplasma pneumoniae pneumonia
Xuehui ZHANG ; Jingjing HAN ; Yuyan ZHANG ; Ruihan LIU
Journal of Chinese Physician 2024;26(3):418-422
Objective:To explore the correlation between myocardial damage and vascular endothelial growth factor (VEGF), red blood cell distribution width (RDW), and myocardial enzyme spectrum in children with severe mycoplasma pneumoniae pneumonia.Methods:Sixty children with severe mycoplasma pneumoniae pneumonia and myocardial damage admitted to Jining Medical University from January 2019 to December 2020 were selected as the observation group, and 60 children with severe mycoplasma pneumoniae pneumonia admitted during the same period were selected as the control group. The differences in clinical data and imaging features between the two groups were compared. Pearson correlation analysis was used for correlation analysis; The logistic regression method was applied to analyze the influencing factors of myocardial damage in children with severe mycoplasma pneumoniae pneumonia. The value of VEGF and RDW in predicting myocardial damage in children with severe mycoplasma pneumoniae pneumonia was analyzed using receiver operating characteristic (ROC) curves.Results:The levels of C-reactive protein (CRP), procalcitonin (PCT), VEGF, RDW, creatine kinase isoenzyme (CK-MB), creatine kinase (CK), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH) in the observation group were significantly higher than those in the control group (all P<0.05), and the duration of fever, application of macrolide drugs, and glucocorticoid application time were significantly longer than those in the control group (all P<0.05). There was no statistically significant difference in pulmonary imaging characteristics between the observation group and the control group (all P>0.05). The VEGF and RDW in the observation group were positively correlated with CK-MB and cTnI (all P<0.05). Logistic regression analysis showed that duration of fever, VEGF, RDW, and duration of macrolide drug use were the influencing factors for myocardial damage in children with severe mycoplasma pneumoniae pneumonia (all P<0.05). The area under the ROC curve of VEGF combined with RDW in predicting myocardial damage in children with severe mycoplasma pneumoniae pneumonia was 0.899, significantly higher than that predicted by VEGF and RDW alone (all P<0.05). Conclusions:The serum VEGF and RDW levels in children with severe mycoplasma pneumoniae pneumonia accompanied by myocardial damage are elevated and positively correlated with myocardial enzyme spectrum indicators, which has certain application value in predicting myocardial damage.


Result Analysis
Print
Save
E-mail