1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
5.Orthopedic manipulation combined with percutaneous reduction and Kirschner wire internal fixation for Sanders typeⅡand Ⅲ calcaneal fractures.
Feng DAI ; Jin-Tao LIU ; Zhi-Gang ZHANG ; Xue-Qiang SHEN ; Li-Ming WU ; Peng-Fei YU ; Hong JIANG
China Journal of Orthopaedics and Traumatology 2025;38(3):306-310
OBJECTIVE:
To explore clinical effects of bone setting manipulation combined with pry reduction and Kirschner needle internal fixation in treating SandersⅡ-Ⅲ calcaneal fracture.
METHODS:
Clinical data of 52 patients with types Sanders Ⅱand Ⅲ calcaneal fracture (foot) treated with bone-setting manipulation combined with pry reduction and Kirscher needle internal fixation from July 2017 to July 2019 were retrospectively analyzed, including 43 males and 9 females, aged from 31 to 72 years old with an average of (50.83±10.48) years old; 15 patients with Sanders typeⅡ and 37 patients with Sanders type Ⅲ. The changes of Bühler angle, Gissane angle, calcaneus width and calcaneus height before operation and 24 months after operation were compared, and Maryland foot function score was performed to evaluate clinical effects.
RESULTS:
All patients were followed up from 24 to 60 months with an average of (41.50±9.86)months. The fracture healed normally and the healing time was (11.00±0.95) weeks. Bühler angle, Gissane angle, calcaneal bone width and calcaneal bone height were increased from (16.37±8.36)°, (96.27±9.62)°, (46.82±4.67) mm, (38.41±3.58) mm before operation to (31.48±8.24)°, (111.62±8.69)°, (42.06±4.83) mm, (44.21±3.82) mm at 24 months after operation, and the difference were statistically significant (P<0.01). Postoperative Maryland score at 24 months was (93.04±8.83), 40 patients got excellent result, 7 good and 5 fair.
CONCLUSION
Orthopedic manipulation combined with percutaneous reduction and Kirschner wire internal fixation could significantly improve Bühler angle, Gissane angle, width, and height of Sanders typeⅡ and Ⅲ calcaneal fractures, and the curative effect is satisfactory.
Humans
;
Male
;
Female
;
Calcaneus/surgery*
;
Middle Aged
;
Fracture Fixation, Internal/methods*
;
Adult
;
Aged
;
Fractures, Bone/therapy*
;
Retrospective Studies
;
Bone Wires
;
Manipulation, Orthopedic/methods*
6.Reduction in mitochondrial DNA methylation leads to compensatory increase in mitochondrial DNA content: novel blood-borne biomarkers for monitoring occupational noise.
Jia-Hao YANG ; Zhuo-Ran LI ; Zhuo-Zhang TAN ; Wu-Zhong LIU ; Qiang HOU ; Pin SUN ; Xue-Tao ZHANG
Environmental Health and Preventive Medicine 2025;30():40-40
BACKGROUND:
Prolonged occupational noise exposure poses potential health risks, but its impact on mitochondrial DNA (mtDNA) damage and methylation patterns remains unclear.
METHOD:
We recruited 306 factory workers, using average binaural high-frequency hearing thresholds from pure-tone audiometry to assess noise exposure. MtDNA damage was evaluated through mitochondrial DNA copy number (mtDNAcn) and lesion rate, and mtDNA methylation changes were identified via pyrophosphate sequencing.
RESULTS:
There was a reduction in MT-RNR1 methylation of 4.52% (95% CI: -7.43% to -1.62%) among workers with abnormal hearing, whereas changes in the D-loop region were not statistically significant (β = -2.06%, 95% CI: -4.44% to 0.31%). MtDNAcn showed a negative association with MT-RNR1 methylation (β = -0.95, 95% CI: -1.23 to -0.66), while no significant link was found with D-loop methylation (β = -0.05, 95% CI: -0.58 to 0.48). Mediation analysis indicated a significant increase in mtDNAcn by 10.75 units (95% CI: 3.00 to 21.26) in those with abnormal hearing, with MT-RNR1 methylation mediating 35.9% of this effect.
CONCLUSIONS
These findings suggest that occupational noise exposure may influence compensatory increases in mtDNA content through altered MT-RNR1 methylation.
Humans
;
DNA, Mitochondrial
;
DNA Methylation
;
Male
;
Adult
;
Noise, Occupational/adverse effects*
;
Middle Aged
;
Occupational Exposure/adverse effects*
;
Biomarkers/blood*
;
Female
7.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
8.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
9.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
10.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.

Result Analysis
Print
Save
E-mail