1.Dimethyl fumarate alleviates nerve damage in a mouse model of Parkinson's disease
Ranran LU ; Xu ZHOU ; Lijie ZHANG ; Xinling YANG
Chinese Journal of Tissue Engineering Research 2025;29(5):989-994
BACKGROUND:Parkinson's disease is a multifactorial neurological disorder characterized by progressive loss of dopaminergic neurons,and dimethyl fumarate(DMF)has potent neuroprotective and immunomodulatory effects in neurodegenerative diseases. OBJECTIVE:To explore the neuroprotective mechanism of DMF in a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced Parkinson's disease. METHODS:Twenty-four C57BL/6 mice were selected and randomly divided into control group,model group,low-dose DMF,and high-dose DMF groups.An animal model of Parkinson's disease was established in the latter three groups by intraperitoneal injection of 30 mg/kg MPTP,once a day for 5 consecutive days.Intragastric administration was given 30 minutes after each injection of MPTP.Mice in the low-dose DMF group(30 mg/kg)and high-dose DMF group(50 mg/kg)were intragastrically administered once a day for 7 consecutive days.The control and model groups were initially administered the same dose of normal saline.Behavioral testing,western blot,oxidative stress marker detection,and immunohistochemical staining were used to analyze the regulatory effects of DMF on oxidative stress and Keap1/Nrf2 signaling pathway in MPTP-induced Parkinson's disease mice,as well as the protective mechanism of DMF on degeneration of dopamine neurons. RESULTS AND CONCLUSION:Compared with the model group,mice in the low-dose DMF group exhibited significant improvements in motor retardation and postural imbalance(P<0.01),with even more remarkable improvements observed in the high-dose DMF group(P<0.01).Compared with the control group,the model group showed a significant increase in the oxidative stress marker malondialdehyde and a decrease in superoxide dismutase expression(P<0.01).Compared with the model group,the low-dose DMF group reduced malondialdehyde production and increased superoxide dismutase expression(P<0.01),and similar improvements were observed in the high-dose DMF group(P<0.01).Immunohistochemical and western blot assays demonstrated a significant decrease in the number of dopaminergic neurons and tyrosine hydroxylase protein expression in the substantia nigra of mice in the model group compared with the control group(P<0.01).However,in the low-dose DMF group,there was an increase in the number of dopaminergic neurons and tyrosine hydroxylase protein expression in the substantia nigra(P<0.01),with even more significant improvements in the high-dose DMF group(P<0.01).Western blot results revealed that the model group exhibited elevated Keap1 protein expression and decreased Nrf2 protein expression.In contrast,the DMF groups showed reduced Keap1 protein expression and increased Nrf2 protein expression compared to the model group(P<0.01).To conclude,DMF regulates the Keap1/Nrf2 pathway in the substantia nigra of mice with Parkinson's disease,and this regulatory effect is positively correlated with the dose of DMF(P<0.01).Therefore,we infer that DMF exerts neuroprotective effects through the Keap1/Nrf2 signaling pathway.
2.Effects of artificial turf versus natural grass on biomechanical performance of the lower limbs in young females during jump-landing
Jieming LU ; Yajing LI ; Peijie DU ; Dongqing XU
Chinese Journal of Tissue Engineering Research 2025;29(6):1101-1107
BACKGROUND:It has been found that internal factors such as anatomical structure,hormone level and neuromuscular function of athletes are closely related to the risk of anterior cruciate ligament injuries,and external factors such as the material of the playing field also become one of the risk factors affecting the occurrence of non-contact anterior cruciate ligament injuries,but they are relatively under-attended in the current studies. OBJECTIVE:To explore effects of artificial turf versus natural grass on the biomechanical performance of the lower limbs in young females during jump-landing. METHODS:According to the test needs,artificial turf and natural grass in accordance with the standards of GB/T 20033.3-2006 and GB/T 19995.1-2005 were leveled and fixed on two three-dimensional force measuring platforms.Twenty-one young females were voluntarily recruited and completed the jump-landing task on the artificial turf and natural grass.Subjects stood on the steps and then jumped forward,jumped down to the force measuring platform and immediately jumped with full force to the force measuring platform again.The two landings were required to fall to the two force measuring platforms,and the whole jumping action was considered successful without any pause.The kinematic,kinetic and electromyographic data of the lower limbs during the landing process were collected synchronously to compare and analyze the differences between the two. RESULTS AND CONCLUSION:In terms of kinetics,posterior and vertical ground reaction force at the initial landing moment during jump-landing on the natural grass were significantly lower than those on the artificial turf(P<0.05,P<0.01),as well as at the peak ground reaction force moment(P<0.05,P<0.05).Additionally,the knee flexion moment when jump-landing on the natural grass was higher than that on the artificial turf(P<0.01).In terms of electromyography,within 100 ms after the initial landing moment,the electromyography activity levels of medial femoris muscle,lateral femoris muscle and anterior tibialis muscle when jump-landing on the natural grass were significantly lower than those on the artificial turf(P<0.05,P<0.01,P<0.05).To conclude,compared with the natural grass,jump-landing on the artificial turf leads to an change in biomechanical performance that will cause an increase in anterior cruciate ligament tension.
3.Finite element analysis of impact of varying degrees of supraspinatus muscle rupture on shoulder joint stress
Biao XU ; Tan LU ; Yaqiong JIANG ; Yujiao YIN
Chinese Journal of Tissue Engineering Research 2025;29(9):1768-1774
BACKGROUND:Currently,numerous experiments delve into the intricate anatomy and biomechanical behavior of distinct segments of the supraspinatus muscle.However,the impact of shoulder joint stress resulting from damage to various regions of this muscle remains a scarcely explored domain.Understanding the repercussions of supraspinatus muscle injuries across different regions on the stress distribution and magnitude of articular cartilage and the glenoid is crucial for providing some theoretical support for clinical diagnosis and treatment. OBJECTIVE:To ascertain the maximum stress values by simulating different degrees of supraspinatus muscle rupture on the humeral cartilage surface,glenoid lip,and glenoid cartilage joint surface using three-dimensional finite element software. METHODS:Normal and healthy shoulder joint CT or MRI scans were processed through Mimics and Geomagic to extract molds.Subsequently,models were constructed via Solidworks.Varying degrees of supraspinatus muscle damage were simulated for each model to mimic fractures in different regions.Finally,Ansys,mechanical software,was employed for three-dimensional finite element biomechanical analysis,calculating stress values for the humeral cartilage surface,glenoid lip,and glenoid cartilage joint surface. RESULTS AND CONCLUSION:(1)With worsening degrees of supraspinatus muscle injury,the stress on the shoulder joint cartilage surface and glenoid lip escalated.(2)Among various regions,the anterior part of the supraspinatus muscle exhibited paramount significance.(3)While supraspinatus muscle fractures of differing degrees impacted the magnitude of cartilage stress on the glenoid labial surface,the stress distribution remained constant.(4)It is indicated that during the initial stages of horizontal abduction of the shoulder joint,the anterior region assumes a pivotal role,followed by the posterior deep region.Injury to the anterior part of the supraspinatus muscle leads to a significant surge in stress within the shoulder joint's soft tissue,potentially causing damage to the top of the glenoid lip and the anterior part of the glenoid cartilage.
4.Mechanism of Wumen Zhiqiao gancao decoction inhibiting pathological angiogenesis in degenerative intervertebral discs by regulating HIF-1α/VEGF/Ang signal axis
Zeling HUANG ; Zaishi ZHU ; Yuwei LI ; Bo XU ; Junming CHEN ; Baofei ZHANG ; Binjie LU ; Xuefeng CAI ; Hua CHEN
China Pharmacy 2025;36(7):807-814
OBJECTIVE To explore the effect and mechanism of Zhiqiao gancao decoction (ZQGCD) on pathological angiogenesis of degenerative intervertebral disc. METHODS The rats were randomly divided into sham operation group (normal saline), model group (normal saline), hypoxia inducible factor-1α (HIF-1α) inhibitor (YC-1) group [2 mg/(kg·d), tail vein injection], and ZQGCD low-dose, medium-dose and high-dose groups [3.06, 6.12, 12.24 g/(kg·d)], with 8 rats in each group. Except for sham operation group, lumbar disc degeneration model of rat was constructed in all other groups. After modeling, they were given relevant medicine once a day, for consecutive 3 weeks. After the last medication, pathological changes and angiogenesis of the intervertebral disc tissue in rats were observed; the levels of inflammatory factors [interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α)] and the expressions of angiogenesis-related proteins [HIF-1α, vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), angiotensin 1(Ang 1), Ang 2] in the com intervertebral disc tissue in rats were all determined. In cell experiment, the primary nucleus pulposus cells were isolated and cultured from rats, and cellular degeneration was induced using 50 ng/mL TNF-α. The cells were divided into blank control group (10% blank control serum), TNF-α group (10% blank control serum), YC-1 group (10% blank control serum+0.2 mmol/L YC-1), and 5%, 10%, 15% drug-containing serum group (5%, 10%, 15% drug-containing serum). After 24 hours of intervention, the nucleus pulposus cells were co-cultured with HUVEC. The expressions of Collagen Ⅱ, matrix metalloproteinase-3 (MMP-3) in nucleus pulposus cells were detected. HUVEC proliferation, migration and tube forming ability were detected, and the expression levels of the HIF-1α/VEGF/Ang signal axis and angiogenesis- related proteins (add MMP-2, MMP-9) in HUVEC were detected. RESULTS Animal experiments had shown that compared with model group, the positive expression of CD31 in the intervertebral disc tissues of rats in each drug group was down-regulated (P< 0.05), the levels of inflammatory factors and angiogenesis-related proteins were decreased significantly (P<0.05), and the pathological changes in the intervertebral disc were alleviated. Cell experiments had shown that compared with TNF-α group, the expression of Collagen Ⅱ in nucleus pulposus cells of all drug groups was significantly up-regulated (P<0.05), and the expression of MMP-3 was significantly down-regulated (P<0.05); the proliferation, migration and tubulogenesis of HUVEC were significantly weakened (P<0.05). The mRNA and protein expressions of HIF-1α, VEGF, Ang 2 as well as the expression of angiogenesis-related proteins (except for the expression of Ang 2 mRNA and HIF-1α, VEGFR2, Ang 2 protein in 5% drug- containing serum group) were significantly down-regulated (P<0.05). CONCLUSIONS ZQGCD may inhibit the HIF-1α/VEGF/ Ang signal axis to weaken the angiogenic ability of vascular endothelial cells, improve pathological angiogenesis in the intervertebral disc, and delay the degeneration of the intervertebral disc.
5.Exploration of the realization path of living will under the current legal system in China
Keyi XU ; Jingqi JIA ; Xin HU ; Yinxiao LU ; Ruishuang LIU
Chinese Medical Ethics 2025;38(4):500-511
Under the current legal framework, living will, as an important legal tool for safeguarding patients’ autonomy and dignity, have been widely recognized and implemented in many countries and regions. In China, the promotion of living will also has a solid legal foundation, with their legitimacy reflected in several provisions of the Civil Code of the People’s Republic of China. One of the highlights of the Medical Regulations of the Shenzhen Special Economic Zone (revised in 2022) is the clarification of the legal effect of living will. To ensure that patients’ living will can be accurately implemented at critical moments, the rights and obligations of patients, family members, and healthcare professionals should be clearly defined within the legal framework, and clear guidance should be provided at every stage of implementation.
6.Correlation Between Quality of Life and Traditional Chinese Medicine Syndromes in Patients with Myasthenia Gravis
Yibin ZHANG ; Qi LU ; Baitong WANG ; Yixun QI ; Hanying XU ; Peng XU ; Meijin SONG ; Peixi ZHAO ; Zhiguo LYU ; Jian WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):275-281
ObjectiveThis study aimed to explore the correlation between the quality of life (QOL) and different traditional Chinese medicine (TCM) syndromes in patients with myasthenia gravis (MG), identifying potential influencing factors to provide new insights for clinical interventions and improving the QOL of patients with MG. MethodsA questionnaire survey was conducted on 93 adults with MG who visited the Department of Neurology at the Affiliated Hospital of Changchun University of Chinese Medicine from March 2023 to January 2024. Statistical analysis was performed on the clinical data collected using SPSS 24.0 software. ResultsAmong the 93 patients with MG, the average score for myasthenia gravis quality of life-15 (MGQOL-15) was 17.65±6.27, and that for the 36-item short form health survey (SF-36) was (106.13±11.83) scores. The QOL was rated as good for 16 patients and moderate for 77 patients. There were no statistically significant differences in the scores of MGQOL-15, SF-36, and their individual scales by gender or education level. Age showed statistically significant differences in MGQOL-15 and the role physical (RP) scale (P<0.05), and occupational type showed significant differences in the vitality (VT) scale (P<0.01). The Myasthenia Gravis Foundation of America (MGFA) classification had statistical significance on the total SF-36 score (P<0.01), VT scale (P<0.01), role emotional (RE) scale (P<0.05), social functioning (SF) scale (P<0.05), and physical functioning (PF) scale (P<0.01). Among patients with different TCM syndromes, there were significant differences in MGQOL-15 scores (F=4.919, P<0.01). Moreover, significant differences were observed in SF-36 scores (P<0.01), VT scale (P<0.01), RE scale (P<0.05), mental health (MH) scale (P<0.01), and SF scale (P<0.05). ConclusionFactors affecting the QOL of patients with MG include age, occupational type, and clinical classification of MG. Specifically, a greater impact on the QOL of older patients is observed, while physical laborers have a poorer QOL compared to non-physical laborers. Patients classified as MGFA type Ⅱ and higher have a poorer QOL. Additionally, there is a potential correlation between the QOL and TCM syndromes, with patients presenting with spleen and kidney Qi deficiency having a lower QOL than those with spleen and stomach Qi deficiency or Qi and Yin deficiency, which is particularly evident in the VT, RE, MH, and SF scales.
7.Effect of sodium-glucose cotransporter 2 inhibitor empagliflozin in alleviating uremic cardiomyopathy and related mechanism
Shi CHENG ; Yeqing XIE ; Wei LU ; Jiarui XU ; Yong YU ; Ruizhen CHEN ; Bo SHEN ; Xiaoqiang DING
Chinese Journal of Clinical Medicine 2025;32(2):248-258
Objective To investigate the effect of sodium-glucose cotransporter 2 inhibitor (empagliflozin, EMPA) on myocardial remodeling in a mouse uremic cardiomyopathy (UCM) model induced by 5/6 nephrectomy, through the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (PKB/AKT)/p65 signaling pathway. Methods The animals were divided into three groups: Sham group (n=6), UCM group (n=8), and UCM+EMPA group (n=8). A UCM model was established in C57BL/6N mice using the 5/6 nephrectomy. Starting from 5 weeks post-surgery, EMPA or a placebo was administered. After 16 weeks, blood pressure, serum creatinine, blood urea nitrogen, 24-hour urine glucose and urine sodium were measured. Cardiac structure and function were assessed by echocardiography. Hematoxylin-eosin (HE) staining and Masson trichrome staining were used to observe pathological changes in the heart and kidneys. Wheat germ agglutinin (WGA) staining was used to evaluate myocardial hypertrophy. The real-time quantitative PCR (RT-qPCR) was used to detect the expression levels of myocardial hypertrophy- and fibrosis-related mRNAs. Western blotting was used to detect the expression levels of PI3K, AKT and p65 in myocardial tissues. Results After 16 weeks, UCM group exhibited significantly higher blood pressure, serum creatinine, blood urea nitrogen than sham group (P<0.01); UCM+EMPA group exhibited lower blood pressure, serum creatinine, blood urea nitrogen, and higher 24 h urine sodium and glucose than UCM group (P<0.05). Echocardiographic results showed ventricular remodeling in the UCM group, evidenced by left ventricular wall thickening, left ventricular enlargement, increased left ventricular mass, and decreased systolic function (P<0.05); ventricular remodeling was alleviated (P<0.05), though there was no significant improvement in systolic function in UCM+EMPA group. HE and Masson stainings revealed myocardial degeneration, necrosis, and interstitial fibrosis in UCM group (P<0.01); the myocardial pathology improved with reduced collagen deposition in UCM+EMPA group (P<0.01). WGA staining confirmed myocardial hypertrophy in UCM group (P<0.01), while myocardial hypertrophy was alleviated in UCM+EMPA group (P<0.01). RT-qPCR results showed myocardial hypertrophy- and fibrosis-related genes (NPPA, NPPB, MYH7, COL1A1, COL3A1, TGF-β1) were upregulated in UCM group (P<0.05), but downregulated in UCM+EMPA group. Western blotting showed PI3K, p-AKT/AKT ratio, and p-p65/p65 ratio were increased in UCM group, but decreased in UCM+EMPA group (P<0.05). Conclusion EMPA can improve myocardial hypertrophy and fibrosis in the UCM mouse model, and it may play the role through inhibiting the PI3K/AKT/p65 signaling pathway.
8.Analysis of a case of regulatory violations by an occupational health examination institution
Chanchan QI ; Ruiyan HUANG ; Chaoting ZHAO ; Leyi XU ; Jianyong LU ; Xiaoyi LI ; Jiabin CHEN
China Occupational Medicine 2025;52(1):106-109
Objective To analyze a case of violations by an occupational medical examination (OME) institution and to explore the key control points for the supervision and management of OME institutions, as well as the core role of quality assessment in this context. Methods An OME institution suspected of illegal activities was used as the study subject. Retrospective analysis was conducted. Clues of suspected violations were identified by an on-site quality assessment. After investigation and verification by the local health authorities, legal action was taken against the institution for its violations. Results During an on-site quality assessment, the Guangdong Province OME quality control expert group discovered that the OME institution violated regulations, including unqualified personnel file, exceeding the scope of services category, issuing false reports, failing to report suspected occupational diseases on time, and failing to notify workers about suspected occupational diseases as required. The evidence was then submitted to the Guangdong Province OME Quality Control Center, which subsequently forwarded the case to local health administration department for filing and investigation. After the investigation, penalties were imposed on the OME institution for its illegal activities. Conclusion The key supervision and inspection points in the quality assessment of OME institutions include personnel file configuration, the quality control management system and its implementation, the quality of OME reports, and information reporting. Quality assessment plays a pivotal role in ensuring the legal and compliant practice of OME institutions, safeguarding the health rights and interests of workers, and enhancing the overall standard of the OME industry.
9.Modulation of colonic DNA methyltransferase by mild moxibustion and electroacupuncture in ulcerative colitis TET2 knockout mice
Gege FENG ; Yue ZHANG ; Huangan WU ; Lu ZHU ; Hongxiao XU ; Zhe MA ; Yan HUANG
Digital Chinese Medicine 2025;8(1):100-110
Objective:
To investigate the mechanism of in alleviating colonic mucosal inflammation in ten-eleven translocation (TET) protein 2 gene knockout (TET2-/-) mice with ulcerative colitis (UC) by regulating DNA methyltransferase (DNMT) and DNA hydroxymethylase.
Methods:
Male specific pathogen-free (SPF) grade C57BL/6J wild-type (WT) mice (n = 8) and TET2-/- mice (n = 20) were used to establish UC models by freely drinking 3% dextran sulfate sodium solution for 7 d. After UC model validation through histopathological examination in two mice from each type, the remaining mice were divided into four groups (n = 6 in each group): WT model (WT + UC), TET2-/- model (TET2-/- + UC), TET2-/- mild moxibustion (TET2-/- + MM), and TET2-/- electroacupuncture (TET2-/- + EA) groups. TET2-/- + MM group received mild moxibustion on Tianshu (ST25) and Qihai (CV6) for 10 min daily for 7 d. The TET2-/- + EA group also applied electroacupuncture (1 mA, 2/100 Hz) at the same acupoints for 10 min daily for 7 d. The disease activity index (DAI) scores of each group of mice were accessed daily. The colon lengths of mice in groups were measured following intervention. The pathological changes in the colon tissues were observed with hematoxylin and eosin (HE) staining. The concentrations of interleukin (IL)-6, C-C motif chemokine 17 (CCL17), and C-X-C motif chemokine ligand 10 (CXCL10) in serum were detected by enzyme-linked immunosorbent assay (ELISA). The expression of DNMT proteins (DNMT1, DNMT3A, and DNMT3B) in the colon tissues was detected by immunohistochemistry. The expression of 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), histone deacetylase 2 (HDAC2), and DNA hydroxymethylase family proteins (TET 1 and TET3) was detected using immunofluorescence, which also determined the co-localization of TET1 and IL-6 protein.
Results:
Compared with WT + UC group, TET2-/- + UC group exhibited significantly higher DAI scores and shorter colon lengths (P < 0.01). Both mild moxibustion and electroacupuncture significantly decreased DAI scores and ameliorated colon shortening in TET2-/- mice (P < 0.001). Histopathological scores of TET2-/- + UC mice were significantly higher than those of WT + UC group (P < 0.001) and were significantly reduced after both mild moxibustion and electroacupuncture interventions (P < 0.001). Serum levels of IL-6, CCL17, and CXCL10 were significantly elevated in TET2-/- + UC group compared with WT + UC group (P < 0.001). Mild moxibustion significantly reduced IL-6, CCL17, and CXCL10 levels (P < 0.001, P < 0.001, and P < 0.01, respectively), while electroacupuncture also significantly reduced IL-6, CCL17, and CXCL10 levels (P < 0.05, P < 0.01, and P < 0.01, respectively). TET2-/- + UC mice showed increased expression levels of DNMT1, DNMT3A , DNMT3B, and 5-mC (P < 0.05, P < 0.01 and P < 0.001, respectively), with decreased expression levels of TET1, TET3, 5-hmC, and HDAC2 (P < 0.001). Mild moxibustion significantly reduced DNMT1, DNMT3B, and 5-mC levels (P < 0.05, P < 0.01, and P < 0.001, respectively), while increasing expression levels of TET1, TET3, 5-hmC, and HDAC2 (P < 0.001, P < 0.001, P < 0.05, and P < 0.001, respectively). Electroacupuncture significantly decreased 5-mC and DNMT3B levels (P < 0.001 and P < 0.01, respectively) and increased 5-hmC and HDAC2 levels (P < 0.05 and P < 0.001, respectively), but did not significantly affect TET1 and TET3 expression (P > 0.05). Compared with TET2-/- + MM group, TET2-/- + EA group showed significantly higher 5-mC expression (P < 0.001). TET2-/- + UC group exhibited markedly increased IL-6 expression and higher co-localization of TET1 and IL-6 in mucosal epithelium, whereas minimal IL-6 expression was observed in the other groups.
Conclusion
Mild moxibustion and electroacupuncture significantly ameliorate colonic inflammation exacerbated by TET2 deficiency in UC mice via epigenetic modulation. Distinct mechanisms exist between the two interventions: mild moxibustion regulates both DNMT and hydroxymethylase, whereas electroacupuncture primarily affects DNMT.
10.Environmental contamination status of norovirus outbreaks in schools and nurseries in Linhai City
ZHENG Jianjun, WANG Xi,HONG Danyang, LI Yaling, XU Qiumeng, ZHANG Huili, HAN Qian, LU Da, ZHENG Qiao
Chinese Journal of School Health 2025;46(4):601-603
Objective:
To investigate the environmental contamination of norovirus in nurseries and primary/secondary schools, so as to provide a scientific basis for effective prevention and control measures.
Methods:
A total of 483 external environmental samples were collected from 34 cluster outbreaks of norovirus gastroenteritis in kindergartens and primary/secondary schools in Linhai City from 2021 to 2024. Pathogen detection was conducted using a rapid nucleic acid extraction kit and realtime fluorescence RT-PCR, and the results were analyzed using the χ2 test or Fishers exact test.
Results:
Among the collected external environmental samples, the total positive rate of surface contamination was 13.66%. The positive rates in kindergartens and primary/secondary schools were 12.20% and 15.82%, respectively. In kindergartens, the five surfaces with the highest detection rates were desks/chairs (23.33%), toilet stool troughs (20.69%), urinal troughs (12.00%), washbasins/sinks (11.11%), and toilet mops (9.38%). In primary/secondary schools, the top five were toilet stool troughs (38.30%), urinal troughs (23.53%), toilet door handles (13.04%), toilet mops (12.50%), and drinking cups (11.11%). The difference in positive detection rates among different external environments in primary/secondary schools was statistically significant (Fishers exact probability test, P<0.01). The positive detection rate in sanitary toilets was higher than that in classroom environments (χ2=17.38), while the positive detection rate in classroom environments of kindergartens was higher than that in primary/secondary schools (χ2=5.42)(P<0.05).
Conclusions
Norovirus exhibits a high contamination rate in nurseries and schools, particularly in restroom areas. Strengthening sanitation and disinfection in highrisk environments, and improving hygiene awareness among children and staff, are essential for the effective prevent and control of norovirus.


Result Analysis
Print
Save
E-mail