1.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
2.Aging and Regeneration of Hypothalamic Neural Stem Cells
Progress in Biochemistry and Biophysics 2025;52(5):1126-1139
Hypothalamic neural stem cells (htNSCs) are a type of glial-like neural stem cell located in the hypothalamus, possessing unique biological characteristics. They not only have the capacity to proliferate and differentiate but can also migrate into the parenchymal regions of the hypothalamus, further developing into neurons and successfully integrating into neural circuits. HtNSCs play multiple key physiological roles in the adult hypothalamus, including contributing to the formation of the blood-hypothalamic barrier (BHB), which is crucial for maintaining the stability of the hypothalamic environment. Through the BHB, htNSCs facilitate the effective diffusion of small molecules between the blood, cerebrospinal fluid, and hypothalamic parenchyma, thereby ensuring the proper transmission of nutrients and signaling molecules. In addition, htNSCs can sense fluctuations in blood glucose levels and regulate the release of neuropeptides accordingly, thus influencing the body’s energy metabolism and endocrine balance. However, as the body ages, the function of htNSCs gradually declines. Studies have shown that the aging of htNSCs has significant adverse effects on energy metabolism, sex hormone secretion, and overall hypothalamic function. During the aging process, the proliferative and differentiative capacities of htNSCs diminish, leading to reduced neuronal replenishment and subsequently impairing the hypothalamus’s ability to regulate energy balance. Furthermore, aging htNSCs may secrete inflammatory factors that disrupt the endocrine functions of the hypothalamus, thereby affecting sex hormone secretion. This impact extends beyond the hypothalamus itself and may exert widespread effects on the entire endocrine system through pathways such as the hypothalamic-pituitary-gonadal axis. Fortunately, research has found that transplanting young htNSCs can effectively alleviate neurological and skeletal muscle dysfunction associated with aging. This transplantation therapy replenishes active htNSCs, restoring normal hypothalamic function and thereby improving the body’s energy metabolism and neuromuscular function. These findings offer new perspectives and potential therapeutic strategies for anti-aging interventions. In recent years, the role of htNSCs in regulating energy metabolism and promoting aging has attracted significant attention from researchers. Studies have shown that the aging of htNSCs is closely linked to the development of various diseases. For instance, in obesity and metabolic syndrome, htNSC dysfunction may lead to disturbances in energy metabolism. Moreover, the aging of htNSCs has also been associated with the onset of neurodegenerative diseases. Therefore, in-depth research into the mechanisms underlying htNSC aging is crucial for understanding the pathogenesis of these conditions. This article briefly reviews the classification of htNSCs, the impacts of their aging on bodily functions, their relationship with related diseases, and the regulatory mechanisms that promote htNSC regeneration. Some strategies aimed at promoting htNSC regeneration and counteracting their aging appear to influence the overall aging phenotype of organisms. For example, studies have shown that modulating specific signaling pathways or gene expression can promote htNSC regeneration, thereby delaying the aging process. Additionally, certain natural products or pharmacological agents may also influence htNSC aging. Further research on htNSC aging will enhance our understanding of the hypothalamus’s role in systemic aging and elucidate the reasons behind gender differences in aging patterns. Moreover, these studies may offer novel approaches and therapeutic targets for improving energy metabolism disorders and treating diseases associated with gonadal hormone abnormalities. In summary, htNSCs play a vital role in the physiological functions of the hypothalamus and the aging process. Further investigation into the mechanisms and regulatory pathways of htNSC aging will aid in the development of new anti-aging therapies and provide innovative strategies for the treatment of related diseases.
3.Small Intestine Lipid Absorption and Health: The Improvement Effect of Exercise Under The Challenge of High-fat Diet
Wei-Huan WANG ; Yu-Xi DAI ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(6):1560-1573
The two core causes of obesity in modern lifestyle are high-fat diet (HFD) and insufficient physical activity. HFD can lead to disruption of gut microbiota and abnormal lipid metabolism, further exacerbating the process of obesity. The small intestine, as the “first checkpoint” for the digestion and absorption of dietary lipids into the body, plays a pivotal role in lipid metabolism. The small intestine is involved in the digestion, absorption, transport, and synthesis of dietary lipids. The absorption of lipids in the small intestine is a crucial step, as overactive absorption leads to a large amount of lipids entering the bloodstream, which affects the occurrence of obesity. HFD can lead to insulin resistance, disruption of gut microbiota, and inflammatory response in the body, which can further induce lipid absorption and metabolism disorders in the small intestine, thereby promoting the occurrence of chronic metabolic diseases such as obesity. Long term HFD can accelerate pathological structural remodeling and lipid absorption dysfunction of the small intestine: after high-fat diet, the small intestine becomes longer and heavier, with excessive villi elongation and microvilli elongation, thereby increasing the surface area of lipid absorption and causing lipid overload in the small intestine. In addition, overexpression of small intestine uptake transporters, intestinal mucosal damage induced “intestinal leakage”, dysbiosis of intestinal microbiota, ultimately leading to abnormal lipid absorption and chronic inflammation, accelerating lipid accumulation and obesity. Exercise, as one of the important means of simple, economical, and effective proactive health interventions, has always been highly regarded for its role in improving lipid metabolism homeostasis. The effect of exercise on small intestine lipid absorption shows a dose-dependent effect. Moderate to low-intensity aerobic exercise can improve the intestinal microenvironment, regulate the structure and lipid absorption function of the small intestine, promote lipid metabolism and health, while vigorous exercise, excessive exercise, and long-term high-intensity training can cause intestinal discomfort, leading to the destruction of intestinal structure and related symptoms, affecting lipid absorption. Long term regular exercise can regulate the diversity of intestinal microbiota, inhibit inflammatory signal transduction such as NF-κB, enhance intestinal mucosal barrier function, and improve intestinal lipid metabolism disorders, further enhancing the process of small intestinal lipid absorption. Exercise also participates in the remodeling process of small intestinal epithelial cells, regulating epithelial structural homeostasis by activating cell proliferation related pathways such as Wnt/β-catenin. Exercise can regulate the expression of lipid transport proteins CD36, FATP, and NPC1L1, and regulate the function of small intestine lipid absorption. However, the research on the effects of long-term exercise on small intestine structure, villus structure, absorption surface area, and lipid absorption related proteins is not systematic enough, the results are inconsistent, and the relevant mechanisms are not clear. In the future, experimental research can be conducted on the dose-response relationship of different intensities and forms of exercise, exploring the mechanisms of exercise improving small intestine lipid absorption and providing theoretical reference for scientific weight loss. It should be noted that the intestine is an organ that is sensitive to exercise response. How to determine the appropriate range, threshold, and form of exercise intensity to ensure beneficial regulation of intestinal lipid metabolism induced by exercise should become an important research direction in the future.
4.Exercise Improves Metaflammation: The Potential Regulatory Role of BDNF
Yu-Xi DAI ; Wei-Huan WANG ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(9):2314-2331
Metaflammation is a crucial mechanism in the onset and advancement of metabolic disorders, primarily defined by the activation of immune cells and increased concentrations of pro-inflammatory substances. The function of brain-derived neurotrophic factor (BDNF) in modulating immune and metabolic processes has garnered heightened interest, as BDNF suppresses glial cell activation and orchestrates inflammatory responses in the central nervous system via its receptor tyrosine kinase receptor B (TrkB), while also diminishing local inflammation in peripheral tissues by influencing macrophage polarization. Exercise, as a non-pharmacological intervention, is extensively employed to enhance metabolic disorders. A crucial mechanism underlying its efficacy is the significant induction of BDNF expression in central (hypothalamus, hippocampus, prefrontal cortex, and brainstem) and peripheral (liver, adipose tissue, intestines, and skeletal muscle) tissues and organs. This induction subsequently regulates inflammatory responses, ameliorates metabolic conditions, and decelerates disease progression. Consequently, BDNF is considered a pivotal molecule in the motor-metabolic regulation axis. Despite prior suggestions that BDNF may have a role in the regulation of exercise-induced inflammation, systematic data remains inadequate. Since that time, the field continues to lack structured descriptions and conversations pertinent to it. As exercise physiology research has advanced, the academic community has increasingly recognized that exercise is a multifaceted activity regulated by various systems, with its effects contingent upon the interplay of elements such as type, intensity, and frequency of exercise. Consequently, it is imperative to transcend the prior study paradigm that concentrated solely on localized effects and singular mechanisms and transition towards a comprehensive understanding of the systemic advantages of exercise. A multitude of investigations has validated that exercise confers health advantages for individuals with metabolic disorders, encompassing youngsters, adolescents, middle-aged individuals, and older persons, and typically enhances health via BDNF secretion. However, exercise is a double-edged sword; the relationship between exercise and health is not linearly positive. Insufficient exercise is ineffective, while excessive exercise can be detrimental to health. Consequently, it is crucial to scientifically develop exercise prescriptions, define appropriate exercise loads, and optimize health benefits to regulate bodily metabolism. BDNF mitigates metaflammation via many pathways during exercise. Initially, BDNF suppresses pro-inflammatory factors and facilitates the production of anti-inflammatory factors by modulating bidirectional transmission between neural and immune cells, therefore diminishing the inflammatory response. Secondly, exercise stimulates the PI3K/Akt, AMPK, and other signaling pathways via BDNF, enhancing insulin sensitivity, reducing lipotoxicity, and fostering mitochondrial production, so further optimizing the body’s metabolic condition. Moreover, exercise-induced BDNF contributes to the attenuation of systemic inflammation by collaborating with several organs, enhancing hepatic antioxidant capacity, regulating immunological response, and optimizing “gut-brain” axis functionality. These processes underscore the efficacy of exercise as a non-pharmacological intervention for enhancing anti-inflammatory and metabolic health. Despite substantial experimental evidence demonstrating the efficacy of exercise in mitigating inflammation and enhancing BDNF levels, numerous limitations persist in the existing studies. Primarily, the majority of studies have concentrated on molecular biology and lack causal experimental evidence that explicitly confirms BDNF as a crucial mediator in the exercise regulation of metaflammation. Furthermore, the outcomes of current molecular investigations are inadequately applicable to clinical practice, and a definitive pathway of “exercise-BDNF-metaflammation” remains unestablished. Moreover, the existing research methodology, reliant on animal models or limited human subject samples, constrains the broad dissemination of the findings. Future research should progressively transition from investigating isolated and localized pathways to a comprehensive multilevel and multidimensional framework that incorporates systems biology and exercise physiology. Practically, there is an immediate necessity to undertake extensive, double-blind, randomized controlled longitudinal human studies utilizing multi-omics technologies (e.g., transcriptomics, proteomics, and metabolomics) to investigate the principal signaling pathways of BDNF-mediated metaflammation and to elucidate the causal relationships and molecular mechanisms involved. Establishing a more comprehensive scientific evidence system aims to furnish a robust theoretical framework and practical guidance for the mechanistic interpretation, clinical application, and pharmaceutical development of exercise in the prevention and treatment of metabolic diseases.
5.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
6.Research progress of effect mechanism of acupotomy for knee osteoarthritis.
Wenying YU ; Jing LIU ; Hong LIU ; Liangzhi ZHANG ; Zehao LIN ; Zhongbiao XIU
Chinese Acupuncture & Moxibustion 2025;45(6):867-874
Acupotomy therapy demonstrates the definite clinical efficacy on knee osteoarthritis (KOA). After reviewing systematically the mechanism studies on acupotomy for KOA over the past 5 years, It is revealed that acupotomy synergistically intervenes in the pathological progression of KOA through multi-target approaches, such as regulating cartilage homeostasis, restoring skeletal muscle function, alleviating synovial inflammatory responses, remodeling subchondral bone, and neuromodulation. But the current research still limits to single-tissue phenotypic observation, and is insufficiency in the in-depth exploration of multi-tissue synergistic interactions and molecular upstream-downstream regulatory mechanisms. Future studies should focus on the inheritance and innovation of acupotomy theory, and integrating multi-omics analytical technologies, artificial intelligence, and novel biochemical detection methods. The mechanism research targets on the interaction mechanisms among tissues, direct effects of acupotomy, immune-inflammatory regulatory mechanisms, and analgesic mechanisms, so as to comprehensively elucidate the therapeutic mechanism of acupotomy for KOA.
Humans
;
Acupuncture Therapy
;
Osteoarthritis, Knee/genetics*
;
Animals
7.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
8.Local overexpression of miR-429 sponge in subcutaneous white adipose tissue improves obesity and related metabolic disorders.
Liu YAO ; Wen-Jing XIU ; Chen-Ji YE ; Xin-Yu JIA ; Wen-Hui DONG ; Chun-Jiong WANG
Acta Physiologica Sinica 2025;77(3):441-448
Obesity is a worldwide health problem. An imbalance in energy metabolism is an important cause of obesity and related metabolic diseases. Our previous studies showed that inhibition of miR-429 increased the protein level of uncoupling protein 1 (UCP1) in beige adipocytes; however, whether local inhibition of miR-429 in subcutaneous adipose tissue affects diet-induced obesity and related metabolic disorders remains unclear. The aim of this study was to investigate the effect of local overexpression of miR-429 sponge in subcutaneous adipose tissue on obesity and related metabolic disorders. The control adeno-associated virus (AAV) or AAV expressing the miR-429 sponge was injected into mouse inguinal white adipose tissue. Seven days later, the mice were fed a high-fat diet for 10 weeks to induce obesity. The effects of the miR-429 sponge on body weight, adipose tissue weight, plasma glucose and lipid levels, and hepatic lipid content were explored. The results showed that the overexpression of miR-429 sponge in subcutaneous white adipose tissue reduced body weight and fat mass, decreased fasting blood glucose and plasma cholesterol levels, improved glucose tolerance, and alleviated hepatic lipid deposition in mice. Mechanistic investigation showed that the inhibition of miR-429 significantly upregulated the expression of UCP1 in adipocytes and adipose tissue. These results suggest that local inhibition of miR-429 in subcutaneous white adipose tissue ameliorates obesity and related metabolic disorders potentially by upregulating UCP1, and miR-429 is a potential therapeutic target for the treatment of obesity and related metabolic disorders.
Animals
;
MicroRNAs/physiology*
;
Obesity/metabolism*
;
Mice
;
Adipose Tissue, White/metabolism*
;
Metabolic Diseases
;
Subcutaneous Fat/metabolism*
;
Male
;
Uncoupling Protein 1/metabolism*
;
Diet, High-Fat
;
Mice, Inbred C57BL
9.Drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma and dynamics of active components in drying process.
Yu-Qin LI ; Xiu-Xiu SHA ; Zhe ZHANG ; Shu-Lan SU ; Liang NI ; Sheng GUO ; Hui YAN ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(1):128-139
This study explored the drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma(SM), established the suitable models simulating the drying kinetics, and then analyzed the dynamic changes of active components during the drying processes with different methods, aiming to provide a basis for the establishment of suitable drying methods and the quality control of SM. The drying kinetics were studied based on the drying curve, drying rate, moisture effective diffusion coefficient, and drying activation energy, and the appropriate drying kinetics model of SM was established. The drying performance of different methods, such as hot air drying, infrared drying, and microwave drying of SM was evaluated, and the changes in the content of 10 salvianolic acids and 6 tanshinones during drying were analyzed by UPLC-TQ-MS. The Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS) was employed to evaluate the quality of SM dried with different methods. The results showed that the drying rate and moisture effective diffusion coefficient of SM increased with the rise in drying temperature, and the maximum drying rates of different methods were in the order of microwave drying > infrared drying > hot air drying, slice > whole root. The drying rate decreased with the rise in temperature and the extension of drying time. The activation energy of hot air drying was higher than that of infrared drying in SM. The most suitable model for simulating the drying process of SM was the Page model. The TOPSIS results suggested infrared drying at 50 ℃ was the optimal drying method for SM. During the drying process, the content of salvianolic acids increased in different degrees with the loss of moisture, among which salvianolic acid B showed the largest increase of 44 times compared with that in the fresh medicinal material. Tanshinones also existed in the fresh herb of SM, and the content of tanshinone Ⅱ_A increased by 3 times after drying. The results provided a basis for the establishment of suitable drying methods and the quality control of SM.
Salvia miltiorrhiza/chemistry*
;
Desiccation/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Kinetics
;
Quality Control
;
Abietanes
10.Traditional Chinese medicine dry powder inhalers: research status and development ideas and methods.
Yu-Wen MA ; Yi-Chen ZENG ; Hao-Ran WANG ; Guang-Fu LIU ; Jun JIANG ; Yu-Song ZENG ; Bai-Xiu ZHAO ; Jin FANG
China Journal of Chinese Materia Medica 2025;50(3):620-631
As an innovative dosage form, traditional Chinese medicine(TCM) dry powder inhalers have emerged as a focal point in the research and development of new preparations due to its high efficiency, safety, and bioavailability. This paper systematically reviewed the relevant literature and patents associated with TCM dry powder inhalers to analyze the origins and the current research and development status. Furthermore, this paper probed into the research and development ideas of TCM dry powder inhalers regarding clinical positioning, prescription screening, and druggability. Additionally, the paper thoroughly analyzed the technical barriers in druggability studies and elaborated on corresponding research techniques and coping measures. Furthermore, it emphasized the need for improved regulations and policies governing TCM dry powder inhalers, advocated for strengthened oversight, and called for the establishment of a scientific quality evaluation system. Measures such as promoting production-education-research collaboration, enhancing personnel training, and fostering international exchanges were proposed to provide a scientific and systematic reference for the future research, development, and application of TCM dry powder inhalers, thereby facilitating the rapid modernization of TCM.
Humans
;
Dry Powder Inhalers/trends*
;
Drugs, Chinese Herbal/chemistry*
;
Medicine, Chinese Traditional/instrumentation*
;
Administration, Inhalation

Result Analysis
Print
Save
E-mail