1.Chemical composition and efficacy of warming lung and resolving fluid retention of Asarum forbesii grown under different shading conditions.
Lu LIAO ; Li-Xian LU ; Hong-Zhuan SHI ; Qiao-Sheng GUO ; Cheng-Hao FEI ; Kun ZHAO ; Yuan-Yuan XING ; Yong SU ; Chang LIU ; Xin-Yue YUAN
China Journal of Chinese Materia Medica 2025;50(2):384-394
Asarum forbesii is a perennial herb born in a shaded and humid environment, which is warm in nature. With the efficacy of warming lung, resolving fluid retention, and relieving coughs, it can be used to treat the syndrome of cold fluid accumulating in lung. To investigate the effects of different shading conditions on the composition and efficacy of A. forbesii, this study planted A. forbesii under 20% natural light(NL20), 40% natural light(NL40), 60% natural light(NL60), and 80% natural light(NL80) and utilized ultra performance liquid chromatography(UPLC) and micro broth 2-fold dilution method to detect the volatile chemical compounds and the minimum inhibitory concentration. At the same time, the study investigated the effects of A. forbesii grown under different shading conditions on the signs, pathological changes of lung tissues, serum cytokine levels, activities of mitochondrial respiratory chain complexes Ⅰ-Ⅴ in lung tissues, and relative expression of related genes of mice with syndrome of cold fluid accumulating in lung. The results indicated that with the increase of shading, the content of kakuol, methyl eugenol, and asarinin in A. forbesii and the antibacterial effect showed a tendency of increasing first and then decreasing, and the NL40 group was significantly better than the other groups. Under the conditions of NL20 and NL40, A. forbesii significantly alleviated the pathological damage to lung tissues, restored the homeostasis of the lung, and enhanced the energy metabolism level of mice with syndrome of cold fluid accumulating in lung. In addition, A. forbesii planted under the two conditions reduced the content of interleukin-8(IL-8), interleukin-13(IL-13), tumor necrosis factor-α(TNF-α), and mucin 5AC(MUC5AC), increased the levels of interleukin-10(IL-10) and aquaporin 1(AQP1), lowered the expression of MMP9, VEGF, TGF-β, and MAPK3. In conclusion, the therapeutic effect of A. forbesii on the syndrome of cold fluid accumulating in lung was positively correlated with the degree of shading, and the chemical composition and efficacy of warming lung and resolving fluid retention were optimal under the conditions of NL20-NL40. This study can provide reference for the pharmacological research and cultivation of A. forbesii.
Animals
;
Mice
;
Lung/pathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Light
;
Cytokines/genetics*
;
Humans
2.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
3.Comparative epidemiology and treatment outcomes at trauma centers: A cross-national analysis of the United States and China.
Yong FU ; Liu-Yi FAN ; Xin-Jie LUO ; Lei LI ; Delbrynth P MITCHAO ; Kenji INABA ; Guan-Qiao LIU ; Bin YU
Chinese Journal of Traumatology 2025;28(6):399-403
PURPOSE:
Although there are significant differences between China and the United States (US) in trauma medical services, there has been no direct comparative research on the epidemiological data of trauma centers between the 2 countries. This study aims to fill this research gap by directly comparing trauma centers in China and the US, providing valuable data and insights for the development of trauma centers in both countries, promoting academic exchange and cooperation internationally, and enhancing the level of global trauma medical care.
METHODS:
This is a multicenter retrospective descriptive study. Data were collected for trauma patients with an injury severity score ≥16 treated from September 2013 to September 2019 at 2 hospital trauma centers in these 2 countries. Detailed clinical data (including injury mechanism, age, injury site, injury severity score, pre-hospital transport time, whether blood transfusion was performed, whether resuscitative thoracotomy was conducted, hospital and intensive care unit stay duration, the number of organ donor patients, mortality rates, and costs) were meticulously compiled and retrospectively analyzed to identify differences between the 2 trauma centers. The comparison was conducted using SPSS 23 software. Continuous variables are reported as median (Q1, Q3), and Mann Whitney U test is used to compare the median of continuous variables. Use clinically relevant critical points to classify continuous variables, with categorical variables represented as n (%), and comparisons were made between the 2 groups using the χ2 test or Fisher's exact test. Statistical significance was defined as a 2-sided p < 0.05.
RESULTS:
These results point to significant differences in trauma center capacity, pre-hospital transport times, treatment procedures, hospital stay duration, mortality rates, and costs between the 2 centers. The volume of patients in trauma centers is less in China (2465 vs. 5288). Pre-hospital transport time was notably longer in China (180 min vs. 14 min), and the rate of emergency blood transfusions was lower in China (18.4% vs. 50.6%), Emergency thoracotomy was not performed in China but was conducted in 9.8% of cases in the US. Hospitalization costs were significantly lower in China than in the US ($5847 vs. $75,671).
CONCLUSION
There are clear differences in trauma center capacity (number of patients treated), pre-hospital transport time, age distribution of injured patients, injury mechanisms, injury sites, whether emergency thoracotomy is performed, hospital costs, and length of stay between the 2 trauma centers in China and America. Understanding these differences can help us further recognize the characteristics of Eastern and Western trauma patients.
Humans
;
China/epidemiology*
;
Trauma Centers/statistics & numerical data*
;
Retrospective Studies
;
United States/epidemiology*
;
Male
;
Female
;
Wounds and Injuries/therapy*
;
Middle Aged
;
Adult
;
Injury Severity Score
;
Length of Stay/statistics & numerical data*
;
Treatment Outcome
4.Salvianolic Acid B Exerts Antiphotoaging Effect on Ultraviolet B-Irradiated Human Keratinocytes by Alleviating Oxidative Stress via SIRT1 Protein.
Qiao-Ju ZHANG ; Xi LUO ; Yu-Wen ZHENG ; Jun-Qiao ZHENG ; Xin-Ying WU ; Shu-Mei WANG ; Jun SHI
Chinese journal of integrative medicine 2025;31(11):1021-1028
OBJECTIVE:
To explore the anti-photoaging properties of salvianolic acid B (Sal B).
METHODS:
The optimal photoaging model of human immortalized keratinocytes (HaCaT cells) were constructed by expose to ultraviolet B (UVB) radiation. The cells were divided into control, model and different concentrations of Sal B groups. Cell viability was measured via cell counting kit-8. Subsequently, the levels of oxidative stress, including reactive oxygen species (ROS), hydroxyproline (Hyp), catalase (CAT), and glutathione peroxidase (GSH-Px) were detected using the relevant kits. Silent information regulator 1 (SIRT1) protein level was detected using Western blot. The binding pattern of Sal B and SIRT1 was determined via molecular docking.
RESULTS:
Sal B significantly increased the viability of UVB-irradiated HaCaT cells (P<0.05 or P<0.01). Sal B effectively scavenged the accumulation of ROS induced by UVB (P<0.05 or P<0.01). In addition, Sal B modulated oxidative stress by increasing the intracellular concentrations of Hyp and CAT and the activity of GSH-Px (P<0.05 or P<0.01). The Western blot results revealed a substantial increase in SIRT1 protein levels following Sal B administration (P<0.05). Moreover, Sal B exhibited good binding affinity toward SIRT1, with a docking energy of -7.5 kCal/mol.
CONCLUSION
Sal B could improve the repair of photodamaged cells by alleviating cellular oxidative stress and regulating the expression of SIRT1 protein.
Humans
;
Sirtuin 1/metabolism*
;
Ultraviolet Rays
;
Oxidative Stress/radiation effects*
;
Keratinocytes/metabolism*
;
Molecular Docking Simulation
;
Benzofurans/pharmacology*
;
Skin Aging/radiation effects*
;
Reactive Oxygen Species/metabolism*
;
Cell Survival/radiation effects*
;
HaCaT Cells
;
Hydroxyproline/metabolism*
;
Glutathione Peroxidase/metabolism*
;
Catalase/metabolism*
;
Depsides
5.Taxifolin attenuates liver fibrosis by regulating the phosphorylation of NDRG1 at Thr328 via hepatocyte-stellate cell cross talk.
Chuan DING ; Zeping WANG ; Kao SHI ; Sunan LI ; Xinyue DOU ; Yan NING ; Gang CHENG ; Qiao YANG ; Xianan SANG ; Mengyun PENG ; Qiang LYU ; Lu WANG ; Xin HAN ; Gang CAO
Acta Pharmaceutica Sinica B 2025;15(4):2059-2076
Taxifolin (TAX) is a natural compound known for its liver protection effect, but the mechanism remains unknown. Phosphorylated proteomics analyses discovered that the phosphorylation level of NDRG1 at T328 was a key event of TAX-improved liver fibrosis. We established models with NDRG1 knockout (KO) in vivo and in vitro, demonstrating that NDRG1 KO attenuated the development of hepatocyte injury, and combining NDRG1 KO and TAX administration did not result in a reduction in protection against liver injury. Cellular thermal shift assay and surface plasma resonance analysis showed that TAX directly binds to NDRG1 rather than its upstream kinase, subsequently demonstrating that TAX regulated phosphorylation of NDRG1 at T328 through binding to its C289 site. NDRG1 T328A (phosphorylated mutation) and T328E (mimic phosphorylation) in vivo and in vitro confirmed that pNDRG1T328 exacerbates hepatocyte injury along with DNA damage, inflammatory response, and apoptosis, thereby contributing to hepatic stellate cells (HSCs) activation. In contrast, TAX can inhibit the above pathological abnormalities and block hepatocyte injury-triggered HSCs activation and fibrosis. Overall, TAX is a potent liver protection drug primarily targeting NDRG1 and inhibiting pNDRG1T328 in hepatocytes.
6.A Novel Model of Traumatic Optic Neuropathy Under Direct Vision Through the Anterior Orbital Approach in Non-human Primates.
Zhi-Qiang XIAO ; Xiu HAN ; Xin REN ; Zeng-Qiang WANG ; Si-Qi CHEN ; Qiao-Feng ZHU ; Hai-Yang CHENG ; Yin-Tian LI ; Dan LIANG ; Xuan-Wei LIANG ; Ying XU ; Hui YANG
Neuroscience Bulletin 2025;41(5):911-916
7.Construction of a Prognostic Model for Lysosome-dependent Cell Death in Gastric Cancer Based on Single-cell RNA-seq and Bulk RNA-seq Data.
Peng NI ; Kai Xin GUO ; Tian Yi LIANG ; Xin Shuang FAN ; Yan Qiao HUA ; Yang Ye GAO ; Shuai Yin CHEN ; Guang Cai DUAN ; Rong Guang ZHANG
Biomedical and Environmental Sciences 2025;38(4):416-432
OBJECTIVE:
To identify prognostic genes associated with lysosome-dependent cell death (LDCD) in patients with gastric cancer (GC).
METHODS:
Differentially expressed genes (DEGs) were identified using The Cancer Genome Atlas - Stomach Adenocarcinoma. Weighted gene co-expression network analysis was performed to identify the key module genes associated with LDCD score. Candidate genes were identified by DEGs and key module genes. Univariate Cox regression analysis, and least absolute shrinkage and selection operator regression and multivariate Cox regression analyses were performed for the selection of prognostic genes, and risk module was established. Subsequently, key cells were identified in the single-cell dataset (GSE183904), and prognostic gene expression was analyzed. Cell proliferation and migration were assessed using the Cell Counting Kit-8 assay and the wound healing assay.
RESULTS:
A total of 4,465 DEGs, 95 candidate genes, and 4 prognostic genes, including C19orf59, BATF2, TNFAIP2, and TNFSF18, were identified in the analysis. Receiver operating characteristic curves indicated the excellent predictive power of the risk model. Three key cell types (B cells, chief cells, and endothelial/pericyte cells) were identified in the GSE183904 dataset. C19orf59 and TNFAIP2 exhibited predominant expression in macrophage species, whereas TNFAIP2 evolved over time in endothelial/pericyte cells and chief cells. Functional experiments confirmed that interfering with C19orf59 inhibited proliferation and migration in GC cells.
CONCLUSION
C19orf59, BATF2, TNFAIP2, and TNFSF18 are prognostic genes associated with LDCD in GC. Furthermore, the risk model established in this study showed robust predictive power.
Stomach Neoplasms/pathology*
;
Humans
;
Prognosis
;
Lysosomes/physiology*
;
RNA-Seq
;
Cell Death
;
Single-Cell Analysis
;
Gene Expression Regulation, Neoplastic
;
Cell Proliferation
;
Single-Cell Gene Expression Analysis
8.Learning Curve for Using Endoscopic Saphenous Vein Harvesting in Coronary Artery Bypass Grafting
Weihua ZHANG ; Jian ZHANG ; Xiaoke SUN ; Hong LUO ; Ning MA ; Donghai LIU ; Xin ZHANG ; Chenhui QIAO
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(2):319-323
ObjectiveTo investigate the application of endoscopy in obtaining the great saphenous vein (GSV) during coronary artery bypass grafting (CABG) and explore the learning curve, with a particular focus on common challenges encountered during the learning process and their impact on early clinical outcomes. MethodsA retrospective analysis was conducted on clinical data from 83 patients who underwent off-pump CABG with endoscopic GSV harvesting at the First Affiliated Hospital of Zhengzhou University from July 2013 to April 2014. Patients were categorized into four groups based on the chronological order of their hospitalization: Group A (novice group, n=20), Group B (proficient group, n=20), Group C (progressive group, n=20), and Group D (mature group, n=23). Differences in perioperative and midterm follow-up outcomes among the groups were analyzed to determine the learning curve period. ResultsThe study population had a mean age of (60.22±8.06) years and a mean body weight of (69.77±11.66) kg. Comorbidities included hypertension (24 cases), diabetes (26 cases), and subacute cerebral infarction (14 cases). The novice group exhibited significantly shorter GSV length-to-harvest time ratio relative to the other three groups (P<0.001) and a significantly higher incidence of main vein damage (P=0.006). However, there was no statistically significant difference in graft patency at the 1-year follow-up. ConclusionThorough and reliable technical training in endoscopic GSV harvesting is essential to minimize vascular injury caused by novice operators. Approximately 20 cases of hands-on experience and a careful self-analysis of procedural challenges are likely required to achieve proficiency in GSV harvesting.
9.Three-dimensional Printing of Inertial Microchannel with Complex Cross-section and Characterization of Particle Inertial Focusing
Qiao GU ; Xin-Jie ZHANG ; Yao LIU ; Yang BAO ; Hang-Jie ZHU ; Ya-Wei CHEN
Chinese Journal of Analytical Chemistry 2024;52(1):93-101
Projection micro stereolithography three-dimensional(3D)printing method was proposed in this study to fabricate complex microchannels of combined cross-sections.By using 3D printing and polydimethylsiloxane(PDMS)replication methods,two inertial microfluidic chips of three-step and five-step cross-sections were fabricated,and the dimension precisions of the microchannels were controlled within 20 μm.Using the microfluidic chips,the movements of two fluorescent polystyrene particles with diameters of 10 and 6 μm in the stepped channels were investigated.In addition,numerical simulations were applied to demonstrate the inertial focusing mechanisms of particles in the channels.It was found that 10-μm particles had three equilibrium positions in the three-step channel,which located at the inner walls of the three steps,respectively,and most particles focused at the inner step.The 6-μm particles also had three equilibrium positions in the three-step channel.However,the particles migrated to the middle and the outer steps under high flow rates.In the five-step channel,when the flow rate was increased gradually,10-μm particles had a single and two equilibrium positions,respectively,and the particles migrated towards the inner channel wall under high flow rates.In comparison to 10-μm particles,6-μm particles had two stable equilibrium positions in the five-step channel at all flow rate range.It could be concluded that the quantity,shape and strength of the secondary flow vortex could be altered by changing structure of the combined cross-section,thus the equilibrium positions and quantities of the focusing particles could be also regulated.The research outcome might provide new insights for precise cell inertial manipulation and promote the application and development of inertial microfluidic technology in biomedical and other fields.
10.Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation
Yang YI ; Wenzhe LI ; Kefang LIU ; Heng XUE ; Rong YU ; Meng ZHANG ; Yang-Oujie BAO ; Xinyuan LAI ; Jingjing FAN ; Yuxi HUANG ; Jing WANG ; Xiaomeng SHI ; Junhua LI ; Hongping WEI ; Kuanhui XIANG ; Linjie LI ; Rong ZHANG ; Xin ZHAO ; Xue QIAO ; Hang YANG ; Min YE
Journal of Pharmaceutical Analysis 2024;14(1):115-127
Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016 pM.The mechanism was related to binding with Y453 of RBD deter-mined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quan-tum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)path-ways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.

Result Analysis
Print
Save
E-mail