1.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
2.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
3.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
4.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
5.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
6.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
7.Long-term safety and effectiveness of roxadustat in Chinese patients with chronic kidney disease-associated anemia: The ROXSTAR registry.
Xiaoying DU ; Yaomin WANG ; Haifeng YU ; Jurong YANG ; Weiming HE ; Zunsong WANG ; Dongwen ZHENG ; Xiaowei LI ; Shuijuan SHEN ; Dong SUN ; Weimin YU ; Detian LI ; Changyun QIAN ; Yiqing WU ; Shuting PAN ; Jianghua CHEN
Chinese Medical Journal 2025;138(12):1465-1476
BACKGROUND:
Chronic kidney disease (CKD)-associated anemia (CKD-anemia) is associated with poor survival, and hemoglobin targets are often not achieved with current therapies. Phase 3 trials have demonstrated the treatment efficacy of roxadustat for CKD-anemia. This phase 4 study aims to evaluate the long-term (52-week) safety and effectiveness of roxadustat in a broad real-world patient population with CKD-anemia with and without dialysis in China.
METHODS:
This Phase 4 multicenter, open-label, prospective study, conducted from 24 November 2020 to 11 November 2022, evaluated the long-term safety and effectiveness of roxadustat for CKD-anemia in China. Patients aged ≥18 years with CKD-anemia with or without dialysis were included. The initial oral dose was 70-120 mg (weight-based followed by dose adjustment) over 52 weeks. The primary endpoint was safety based on adverse events (AEs). The secondary endpoints were hemoglobin changes from baseline and the proportion of patients who achieved mean hemoglobin ≥100 g/L. Effectiveness evaluable populations 1 (EE1) and EE2 included roxadustat-naïve and previously roxadustat-treated patients, respectively. The safety analysis set (SAF) included all patients who received ≥1 occasion.
RESULTS:
The EE1, EE2, and SAF populations included 1804, 193, and 2021 patients, respectively. In the SAF, the mean age was 50 ± 14 years, and 1087 patients (53.8%) were male. Mean baseline hemoglobin was 96.9 ± 14.0 g/L in EE1 and 100.3 ± 12.9 g/L in EE2. In EE1, the mean (95% confidence interval) hemoglobin changes from baseline over weeks 24-36 and 36-52 were 14.2 (13.5-14.9) g/L and 14.3 (13.5-15.0) g/L, respectively. Over weeks 24-36 and 36-52, 83.3% and 86.1% of patients in EE1 and 82.7% and 84.7% in EE2 achieved mean hemoglobin ≥100 g/L, respectively. In the SAF, 1643 (81.3%) patients experienced treatment-emergent AEs (TEAEs). Overall, 219 (10.8%) patients experienced drug-related TEAEs. Thirty-eight (1.9%) patients died of TEAEs (unrelated to the study drug). Vascular access thrombosis was uncommon.
CONCLUSIONS:
Roxadustat (52 weeks) increased hemoglobin and maintained the treatment target in Chinese patients with CKD-anemia with acceptable safety, supporting its use in real-world settings.
REGISTRATION
Chinese Clinical Trial Registry ( www.chictr.org.cn ) ChiCTR2100046322; CDE ( www.chinadrugtrials.org.cn ) CTR20201568.
Humans
;
Male
;
Female
;
Anemia/etiology*
;
Middle Aged
;
Renal Insufficiency, Chronic/complications*
;
Glycine/adverse effects*
;
Isoquinolines/adverse effects*
;
Aged
;
Prospective Studies
;
Adult
;
Hemoglobins/metabolism*
;
Treatment Outcome
;
China
;
Registries
;
East Asian People
8.PARylation promotes acute kidney injury via RACK1 dimerization-mediated HIF-1α degradation.
Xiangyu LI ; Xiaoyu SHEN ; Xinfei MAO ; Yuqing WANG ; Yuhang DONG ; Shuai SUN ; Mengmeng ZHANG ; Jie WEI ; Jianan WANG ; Chao LI ; Minglu JI ; Xiaowei HU ; Xinyu CHEN ; Juan JIN ; Jiagen WEN ; Yujie LIU ; Mingfei WU ; Jutao YU ; Xiaoming MENG
Acta Pharmaceutica Sinica B 2025;15(9):4673-4691
Poly(ADP-ribosyl)ation (PARylation) is a specific form of post-translational modification (PTM) predominantly triggered by the activation of poly-ADP-ribose polymerase 1 (PARP1). However, the role and mechanism of PARylation in the advancement of acute kidney injury (AKI) remain undetermined. Here, we demonstrated the significant upregulation of PARP1 and its associated PARylation in murine models of AKI, consistent with renal biopsy findings in patients with AKI. This elevation in PARP1 expression might be attributed to trimethylation of histone H3 lysine 4 (H3K4me3). Furthermore, a reduction in PARylation levels mitigated renal dysfunction in the AKI mouse models. Mechanistically, liquid chromatography-mass spectrometry indicated that PARylation mainly occurred in receptor for activated C kinase 1 (RACK1), thereby facilitating its subsequent phosphorylation. Moreover, the phosphorylation of RACK1 enhanced its dimerization and accelerated the ubiquitination-mediated hypoxia inducible factor-1α (HIF-1α) degradation, thereby exacerbating kidney injury. Additionally, we identified a PARP1 proteolysis-targeting chimera (PROTAC), A19, as a PARP1 degrader that demonstrated superior protective effects against renal injury compared with PJ34, a previously identified PARP1 inhibitor. Collectively, both genetic and drug-based inhibition of PARylation mitigated kidney injury, indicating that the PARylated RACK1/HIF-1α axis could be a promising therapeutic target for AKI treatment.
9.Development of a prediction model for incidence of diabetic foot in patients with type 2 diabetes and its application based on a local health data platform
Yexian YU ; Meng ZHANG ; Xiaowei CHEN ; Lijia LIU ; Pei LI ; Houyu ZHAO ; Yexiang SUN ; Hongyu SUN ; Yumei SUN ; Xueyang LIU ; Hongbo LIN ; Peng SHEN ; Siyan ZHAN ; Feng SUN
Chinese Journal of Epidemiology 2024;45(7):997-1006
Objective:To construct a diabetes foot prediction model for adult patients with type 2 diabetes based on retrospective cohort study using data from a regional health data platform.Methods:Using Yinzhou Health Information Platform of Ningbo, adult patients with newly diagnosed type 2 diabetes from January 1, 2015 to December 31, 2022 were included in this study and divided randomly the train and test sets according to the ratio of 7∶3. LASSO regression model and bidirectional stepwise regression model were used to identify risk factors, and model comparisons were conducted with net reclassification index, integrated discrimination improvement and concordance index. Univariate and multivariate Cox proportional hazard regression models were constructed, and a nomogram plot was drawn. Area under the curve (AUC) was calculated as a discriminant evaluation indicator for model validation test its calibration ability, and calibration curves were drawn to test its calibration ability.Results:No significant difference existed between LASSO regression model and bidirectional stepwise regression model, but the better bidirectional stepwise regression model was selected as the final model. The risk factors included age of onset, gender, hemoglobin A1c, estimated glomerular filtration rate, taking angiotensin receptor blocker and smoking history. AUC values (95% CI) of risk outcome prediction at year 5 and 7 were 0.700 (0.650-0.749) and 0.715(0.668-0.762) for the train set and 0.738 (0.667-0.801) and 0.723 (0.663-0.783) for the test set, respectively. The calibration curves were close to the ideal curve, and the model discrimination and calibration powers were both good. Conclusions:This study established a convenient prediction model for diabetic foot and classified the risk levels. The model has strong interpretability, good discrimination power, and satisfactory calibration and can be used to predict the incidence of diabetes foot in adult patients with type 2 diabetes to provide a basis for self-assessment and clinical prediction of diabetic foot disease risk.
10.Development and application of a prediction model for incidence of diabetic retinopathy in newly diagnosed type 2 diabetic patients based on regional health data platform
Xiaowei CHEN ; Lijia LIU ; Yexian YU ; Meng ZHANG ; Pei LI ; Houyu ZHAO ; Yexiang SUN ; Hongyu SUN ; Yumei SUN ; Xueyang LIU ; Hongbo LIN ; Peng SHEN ; Siyan ZHAN ; Feng SUN
Chinese Journal of Epidemiology 2024;45(9):1283-1290
Objective:To develop a prediction model for the risk of diabetic retinopathy (DR) in patients with newly diagnosed type 2 diabetes mellitus (T2DM).Methods:Patients with new diagnosis of T2DM recorded in Yinzhou Regional Health Information Platform between January 1, 2015 and December 31, 2022 were included in the study. The predictor variables were selected by using Lasso-Cox proportional hazards regression model. Cox proportional hazards regression models were used to establish the prediction model for the risk of DR. Bootstrap method (500 resamples) was used for internal validation, and the performance of the model was assessed by C-index, the receiver operating characteristic curve and area under the curve (AUC), and calibration curve.Results:The predictor variables included in the final model were age of T2DM onset, education level, fasting plasma glucose, glycated hemoglobin A1c, urinary albumin, estimated glomerular filtration rate, and history of lipid-lowering agent and angiotensin converting enzyme inhibitor uses. The C-index of the final model was 0.622, and the mean corrected C-index was 0.623 (95% CI: 0.607-0.634). The AUC values for predicting the risk of DR after 3, 5, and 7 years were 0.631, 0.620, and 0.624, respectively, with a high degree of overlap of the calibration curves with the ideal curves. Conclusion:In this study, a simple and practical risk prediction model for DR risk prediction was developed, which could be used as a reference for individualized DR screening and intervention in newly diagnosed T2DM patients.

Result Analysis
Print
Save
E-mail