1.Effects and mechanism of asperuloside on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis
Chao XU ; Xiaoping TAN ; Jie LI ; Minghua AI ; Yueyue LU ; Chaoyong LIU
China Pharmacy 2025;36(2):166-171
OBJECTIVE To investigate the effects and mechanism of asperuloside (Asp) on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis (UC). METHODS The male SD rats were randomly divided into Control group, model group (UC group), ASP low-dose and high-dose groups [Asp-L, Asp-H groups, Asp 35, 70 mg/(kg·d)], ASP high-dose group+AMPK inhibitor Compound C group [Asp-H+Compound C group, Asp 70 mg/(kg·d)+Compound C 0.2 mg/(kg·d)], with 12 rats in each group. Except for Control group, the other groups were injected with 50% ethanol (0.25 mL)+5% 2,4, 6- trinitrobenzene sulfonic acid solution (2 mL/kg) into the intestinal cavity to construct UC model. After modeling, the rats in each drug group were given corresponding drug solution by gavage or (and) tail vein injection, once a day, for 14 consecutive days. After the last administration, the weight of rats in each group was measured, and the length of their colons was measured; disease activity index (DAI) score and colonic mucosal damage index (CMDI) score were performed, and the serum levels of inflammatory factors (interleukin-18, -1β, -6) were detected. The pathological changes of the colon tissue were observed. The expressions of pyroptosis-related proteins [caspase-1, gasdermin D (GSDMD)] in colon tissue, and pathway-related proteins such as adenosine monophosphate-activated protein kinase (AMPK), thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) were all detected. RESULTS Compared with Control group, the colon tissue structure of rats in UC group was damaged, with obvious infiltration of inflammatory cells and edema. Their body weight, colon length and phosphorylation level of AMPK protein were significantly reduced or shortened; DAI and CMDI scores, serum levels of inflammatory factors, and the protein expressions of caspase-1, GSDMD, TXNIP, NLRP3 and ASC in colon tissue were increased or upregulated significantly (P<0.05). Compared with UC group, the pathological damage of colon tissue in rats was relieved in Asp-L and Asp-H groups, and all quantitative indicators were significantly improved (P<0.05); the improvement effect of Asp-H group was more significant (P<0.05). Compound C could significantly reverse the improvement effect of high-dose of Asp on the above indicators in UC rats (P<0.05). CONCLUSIONS Asp can improve inflammatory damage in colon tissue and inhibit pyroptosis of intestinal epithelial cells in UC rats, which is associated with the activation of AMPK and inhibition of TXNIP/NLRP3 signaling pathway.
2.Effects and mechanism of asperuloside on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis
Chao XU ; Xiaoping TAN ; Jie LI ; Minghua AI ; Yueyue LU ; Chaoyong LIU
China Pharmacy 2025;36(2):166-171
OBJECTIVE To investigate the effects and mechanism of asperuloside (Asp) on the pyroptosis of intestinal epithelial cells in rats with ulcerative colitis (UC). METHODS The male SD rats were randomly divided into Control group, model group (UC group), ASP low-dose and high-dose groups [Asp-L, Asp-H groups, Asp 35, 70 mg/(kg·d)], ASP high-dose group+AMPK inhibitor Compound C group [Asp-H+Compound C group, Asp 70 mg/(kg·d)+Compound C 0.2 mg/(kg·d)], with 12 rats in each group. Except for Control group, the other groups were injected with 50% ethanol (0.25 mL)+5% 2,4, 6- trinitrobenzene sulfonic acid solution (2 mL/kg) into the intestinal cavity to construct UC model. After modeling, the rats in each drug group were given corresponding drug solution by gavage or (and) tail vein injection, once a day, for 14 consecutive days. After the last administration, the weight of rats in each group was measured, and the length of their colons was measured; disease activity index (DAI) score and colonic mucosal damage index (CMDI) score were performed, and the serum levels of inflammatory factors (interleukin-18, -1β, -6) were detected. The pathological changes of the colon tissue were observed. The expressions of pyroptosis-related proteins [caspase-1, gasdermin D (GSDMD)] in colon tissue, and pathway-related proteins such as adenosine monophosphate-activated protein kinase (AMPK), thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) were all detected. RESULTS Compared with Control group, the colon tissue structure of rats in UC group was damaged, with obvious infiltration of inflammatory cells and edema. Their body weight, colon length and phosphorylation level of AMPK protein were significantly reduced or shortened; DAI and CMDI scores, serum levels of inflammatory factors, and the protein expressions of caspase-1, GSDMD, TXNIP, NLRP3 and ASC in colon tissue were increased or upregulated significantly (P<0.05). Compared with UC group, the pathological damage of colon tissue in rats was relieved in Asp-L and Asp-H groups, and all quantitative indicators were significantly improved (P<0.05); the improvement effect of Asp-H group was more significant (P<0.05). Compound C could significantly reverse the improvement effect of high-dose of Asp on the above indicators in UC rats (P<0.05). CONCLUSIONS Asp can improve inflammatory damage in colon tissue and inhibit pyroptosis of intestinal epithelial cells in UC rats, which is associated with the activation of AMPK and inhibition of TXNIP/NLRP3 signaling pathway.
3.Changes in renal function in chronic hepatitis B patients treated initially with entecavir versus tenofovir alafenamide fumarate and related influencing factors
Shipeng MA ; Yanqing YU ; Xiaoping WU ; Liang WANG ; Liping LIU ; Yuliang ZHANG ; Xin WAN ; Shanfei GE
Journal of Clinical Hepatology 2025;41(1):44-51
ObjectiveTo investigate the influence of entecavir (ETV) versus tenofovir alafenamide fumarate (TAF) on renal function in previously untreated patients with chronic hepatitis B (CHB). MethodsA retrospective analysis was performed for the clinical data of 167 previously untreated CHB patients who received ETV or TAF treatment for at least 48 weeks at the outpatient service of Department of Infectious Diseases in The First Affiliated Hospital of Nanchang University from September 2019 to November 2023, and according to the antiviral drug used, they were divided into ETV group with 117 patients and TAF group with 50 patients. In order to balance baseline clinical data, propensity score matching (PSM) was used for matching and analysis at a ratio of 2∶1, and the two groups were compared in terms of estimated glomerular filtration rate (eGFR) and the incidence rate of abnormal renal function at week 48. According to eGFR at week 48, the patients were divided into normal renal function group and abnormal renal function group. The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups, and the chi-square test or the Fisher’s exact test was used for comparison of categorical data between two groups. The multivariate Logistic regression analysis was used to investigate the influencing factors for abnormal renal function, and the receiver operating characteristic (ROC) curve was used to assess the performance of each indicator in predicting abnormal renal function. The Kaplan-Meier method was used to analyze the cumulative incidence rate of abnormal renal function, and the log-rank test was used for comparison. The analysis of variance with repeated measures was used to compare the dynamic changes of eGFR during antiviral therapy in CHB patients. ResultsAfter PSM matching, there were 100 patients in the ETV group and 50 patients in the TAF group. There were no significant differences in baseline clinical data between the ETV group and the TAF group (all P>0.05), with an eGFR level of 112.29±9.92 mL/min/1.73 m2 in the ETV group and 114.72±12.15 mL/min/1.73 m2 in the TAF group. There was a reduction in eGFR from baseline to week 48 in both groups, and compared with the TAF group at week 48, the ETV group had a significantly lower eGFR (106.42±14.12 mL/min/1.73 m2 vs 112.25±13.44 mL/min/1.73 m2, t=-2.422, P=0.017) and a significantly higher incidence rate of abnormal renal function (17.00% vs 4.00%, χ2=5.092, P=0.024). After the patients were divided into normal renal function group with 131 patients and abnormal renal function group with 19 patients, the univariate analysis showed that there were significant differences between the two groups in age (Z=-2.039, P=0.041), treatment drug (ETV/TAF) (χ2=5.092, P=0.024), and baseline eGFR level (t=4.023, P<0.001), and the multivariate Logistic regression analysis showed that baseline eGFR (odds ratio [OR]=0.896, 95% confidence interval [CI]: 0.841 — 0.955, P<0.001) and treatment drug (OR=5.589, 95%CI: 1.136 — 27.492, P=0.034) were independent influencing factors for abnormal renal function. Baseline eGFR had an area under the ROC curve of 0.781 in predicting abnormal renal function in CHB patients, with a cut-off value of 105.24 mL/min/1.73 m2, a sensitivity of 73.68%, and a specificity of 82.44%. The Kaplan-Meier curve analysis showed that the patients with baseline eGFR≤105.24 mL/min/1.73 m2 had a significantly higher cumulative incidence rate of abnormal renal function than those with baseline eGFR>105.24 mL/min/1.73 m2 (χ2=22.330, P<0.001), and the ETV group had a significantly higher cumulative incidence rate of abnormal renal function than the TAF group (χ2=4.961, P=0.026). With the initiation of antiviral therapy, both the ETV group and the TAF group had a significant reduction in eGFR (F=5.259, P<0.001), but the ETV group only had a significant lower level of eGFR than the TAF group at week 48 (t=-2.422, P=0.017); both the baseline eGFR≤105.24 mL/min/1.73 m2 group and the baseline eGFR>105.24 mL/min/1.73 m2 group had a significant reduction in eGFR (F=5.712, P<0.001), and there was a significant difference in eGFR between the two groups at baseline and weeks 12, 24, 36, and 48 (t=-13.927, -9.780, -8.835, -9.489, and -8.953, all P<0.001). ConclusionFor CHB patients initially treated with ETV or TAF, ETV antiviral therapy has a higher risk of renal injury than TAF therapy at week 48.
4.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
5.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
6.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
7.Body roundness index, visceral adiposity index, and metabolic score for visceral fat in predicting new-onset atrial fibrillation: a UK Biobank cohort study
Yi ZHENG ; Lei LIU ; Xinyu ZHENG ; Tong LIU ; Xiaoping LI
Chinese Journal of Clinical Medicine 2025;32(4):720-722
Objective To explore the longitudinal associations of body roundness index (BRI), visceral adiposity index (VAI), and metabolic score for visceral fat (METS-VF) with the risk of new-onset atrial fibrillation (AF). Methods This study included participants from the UK Biobank who were free of AF or pregnancy at baseline and completed the first and second assessments of BRI, VAI, and METS-VF. The changes in BRI, VAI, and METS-VF were classified using K-means clustering analyses, and the cumulative adiposity indices were also calculated. The primary outcome was new-onset AF. Three Cox regression models were employed to investigate the longitudinal associations of the BRI, VAI, and METS-VF changes with the risk of incident new-onset AF. The results were presented as hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs). Restricted cubic spline analyses were performed to explore potential non-linear associations between baseline or cumulative adiposity indices and the risk of new-onset AF. C-index analyses were conducted to evaluate the predictive value of BRI, VAI, and METS-VF for new-onset AF. Subgroup analyses were performed according to age, gender, race, smoking status, alcohol consumption, and physical activity. Polygenic risk scores were applied to account for genetic susceptibility and investigate potential interactions between adiposity indices and genetic risk. Univariate linear regression analyses were performed to evaluate the relationships of cumulative adiposity indices and magnetic resonance imaging and dual X-ray absorptiometry parameters, including visceral adipose tissue (VAT) volume, VAT mass, trunk fat volume, and trunk fat mass. We further applied the eXtreme Gradient Boosting (XGBoost) algorithm, with the feature importance being measured to evaluate the predictive value of each adiposity index for imaging parameters. Mendelian randomization analysis was further conducted to investigate the potential causal relationship between trunk fat mass and AF. Results A total of 12 776 participants were included. Over a median follow-up of 9.60 years, 761 (5.96%) new-onset AF events were recorded. Participants were divided into four classes based on the changes in adiposity indices. In the fully adjusted model, compared to participants in Class 1 of BRI, those in Class 3 (HR=1.30, 95%CI 1.04-1.63, P=0.023) and Class 4 (HR=2.17, 95%CI 1.61-2.93, P<0.001) were associated with significantly higher risks of new-onset AF. Regarding METS-VF, participants in Class 4 of METS-VF also demonstrated a significantly higher risk of new-onset AF compared to those in Class 1 (HR=1.66, 95%CI 1.15-2.39, P=0.007). However, no significant association was observed between different classes of VAI and the risk of new-onset AF. For every 1 standard deviation increase in cumulative BRI, VAI, and METS-VF, the fully adjusted HRs of new-onset AF were 1.23 (95%CI 1.13-1.35), 1.02 (95%CI 0.94-1.10), and 1.23 (95%CI 1.12-1.35), respectively. Cumulative adiposity indices (BRI, VAI, and METS-VF) were divided into quartiles. Using the first quartile as reference, participants in the highest quartiles of BRI (HR=1.40, 95%CI 1.10-1.79, P=0.007) and METS-VF (HR=1.44, 95%CI 1.13-1.83, P=0.003) both exerted a significantly higher risk of new-onset AF. Regarding VAI, no significant association was observed (HR=1.00, 95%CI 0.81-1.23, P=0.988). Restricted cubic spline analyses revealed non-linear relationships between cumulative BRI, baseline/cumulative VAI, and baseline/cumulative METS-VF with new-onset AF risk (all Poverall<0.05, Pnon-linear<0.05). In the C-index analysis, BRI demonstrated the highest predictive performance for new-onset AF, followed by METS-VF and VAI. Subgroup analysis indicated a stronger association between METS-VF and the risk of new-onset AF amongst participants younger than 60 years (Pinteraction=0.008). Polygenic risk score analysis stratified by genetic risk demonstrated a synergistic effect between BRI and genetic risk with new-onset AF, with the overall risk of new-onset AF increasing as both BRI and genetic risk increased. Linear regression analysis revealed a positive correlation between cumulative BRI with VAT volume, VAT mass, trunk fat volume, and trunk fat mass. The feature importance plot derived from the XGBoost algorithm indicated that cumulative BRI had the greatest predictive value on VAT volume, VAT mass, trunk fat volume, and trunk fat mass. Mendelian randomization analysis confirmed a significant causal relationship between trunk fat mass and AF. Conclusions There are significant non-linear associations between BRI, METS-VF, and VAI with new-onset AF. Higher BRI and METS-VF are significantly associated with a higher risk of new-onset AF, whereas no significant association is observed for the VAI. BRI exhibits a positive correlation with VAT and trunk fat, and demonstrates superior performance in predicting new-onset AF compared to VAI and METS-VF. Monitoring and managing BRI may be important in the early detection and intervention of AF.
9.The important role and interaction of platelet-activating factor and T cell immune function in the pathogenesis of vitiligo.
Yi LIU ; Xiaoping LI ; Yao CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):717-723
Objective To investigate the relationship between serum platelet-activating factor (PAF) level, T cell immune function and disease activity in vitiligo patients. Methods A total of 102 patients with vitiligo treated in our hospital from July 18th, 2022 to July 26th, 2023 were enrolled as study subjects. According to VIDA score, the patients were divided into an advanced-stage group (n=54) and a stable stage group (n=49). PAF and T lymphocyte levels were compared between the two groups. Logistic regression analysis was performed to examine the relationship between PAF levels and disease activity, as well as their correlation with T cell subsets. Unconditional logistic regression modeling was employed to analyze the interaction between PAF levels and T cell subsets in disease activity. Results No significant difference was observed in CD3+ levels between advanced and stable stage vitiligo patients. PAF and CD8+ levels in advanced group were significantly higher than those in stable group, while CD4+ levles and CD4+/CD8+ ratios were significantly lower than those in stable group. When PAF level was 18.24 ng/L, the maximum Youden index reached 0.670, with corresponding sensitivity of 84.22% and specificity of 82.77%. The area under ROC curve AUC was 0.858. The intensity of association between PAF level and disease activity was nonlinear dose-response relationship. Among patients with VIDA score ≥1, significant differences were observed in both CD4+ and CD8+ levels across different PAF levels, and the CD4+/CD8+ ratios in vitiligo patients with different VIDA scores was significantly different. Interaction analysis revealed that after adjusting for confounding factors, the effect of PAF levels and T cell subsets on disease activity in vitiligo patients showed significant interaction in both additive model (RERI=4.674, 95%CI: 1.032~11.942; AP=0.763, 95%CI: 0.336~1.201; S=6.854, 95%CI: 1.904~16.520) and multiplicative model (OR=3.461, 95%CI: 1.365~8.713). Conclusion Serum PAF, CD4+, CD8+ and CD4+/CD8+ of vitiligo patients are closely related to disease activity, and PAF level interacts with T cell subsets (CD4+, CD8+, CD4+/CD8+) in the disease activity of vitiligo patients. PAF and T cell immune function may contribute to the occurrence and development of vitiligo, which could serve as clinical indicators of disease activity to guide timely management.
Humans
;
Vitiligo/blood*
;
Platelet Activating Factor/immunology*
;
Male
;
Female
;
Adult
;
Middle Aged
;
Young Adult
;
T-Lymphocytes/immunology*
;
Adolescent
;
T-Lymphocyte Subsets/immunology*
10.Intranodal injection of neoantigen-bearing engineered Lactococcus lactis triggers epitope spreading and systemic tumor regressions.
Junmeng ZHU ; Yi SUN ; Xiaoping QIAN ; Lin LI ; Fangcen LIU ; Xiaonan WANG ; Yaohua KE ; Jie SHAO ; Lijing ZHU ; Lifeng WANG ; Qin LIU ; Baorui LIU
Acta Pharmaceutica Sinica B 2025;15(4):2217-2236
Probiotics are natural systems bridging synthetic biology, physical biotechnology, and immunology, initiating innate and adaptive anti-tumor immune activity. We previously constructed an all-in-one engineered food-grade probiotic Lactococcus lactis (FOLactis) which could boost the crosstalk among different immune cells such as dendritic cells (DCs), natural killer cells, and T cells. Herein, considering the limited clinical efficacy of naked personalized neoantigen peptide vaccines, we decorate FOLactis with tumor antigens by employing a Plug-and-Display system comprising membrane-inserted peptides. Intranodal injection of FOLactis coated with neoantigen peptides (Ag-FOLactis) induces robust DCs presentation and neoantigen-specific cellular immunity. Notably, Ag-FOLactis not only triggers a 45-fold rise in the quantity of locally reactive neoantigen-specific T cells but also induces epitope spreading in both subcutaneous and metastatic tumor-bearing models, leading to potent inhibition of tumor growth. These findings imply that Ag-FOLactis represents a powerful platform to rapidly and easily display antigens, facilitating the development of a bio-activated platform for personalized therapy.

Result Analysis
Print
Save
E-mail