1.Bioinformatics Reveals Mechanism of Xiezhuo Jiedu Precription in Treatment of Ulcerative Colitis by Regulating Autophagy
Xin KANG ; Chaodi SUN ; Jianping LIU ; Jie REN ; Mingmin DU ; Yuan ZHAO ; Xiaomeng LANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):166-173
ObjectiveTo explore the potential mechanism of Xiezhuo Jiedu prescription in regulating autophagy in the treatment of ulcerative colitis (UC) by bioinformatics and animal experiments. MethodsThe differentially expressed genes (DEGs) in the colonic mucosal tissue of UC patients was obtained from the Gene Expression Omnibus (GEO), and those overlapped with autophagy genes were obtained as the differentially expressed autophagy-related genes (DEARGs). DEARGs were imported into Metascape and STRING, respectively, for gene ontology/Kyoto Encyclopedia of Genes and Genomics (GO/KEGG) enrichment analysis and protein-protein interaction (PPI) analysis. Finally, 15 key DEARGs were obtained. The core DEARGs were obtained by least absolute shrinkage and selection operator (LASSO) regression and receiver operating characteristic curve (ROC) analysis. The CIBERSORT deconvolution algorithm was used to analyze the immunoinfiltration of UC patients and the correlations between core DEARGs and immune cells. C57BL/6J mice were assigned into a normal group and a modeling group. The mouse model of UC was established by free drinking of 2.5% dextran sulfate sodium. The modeled mice were assigned into low-, medium-, and high-dose Xiezhuo Jiedu prescription and mesalazine groups according to the random number table method and administrated with corresponding agents by gavage for 7 days. The colonic mucosal morphology was observed by hematoxylin-eosin staining. The protein and mRNA levels of cysteinyl aspartate-specific proteinase 1 (Caspase-1), cathepsin B (CTSB), C-C motif chemokine-2 (CCL2), CXC motif receptor 4 (CXCR4), and hypoxia-inducing factor-1α (HIF-1α) in the colon tissue were determined by Western blot and real-time fluorescence quantitative polymerase chain reaction, respectively. ResultsThe dataset GSE87466 was screened from GEO and interlaced with autophagy genes. After PPI analysis, LASSO regression, and ROC analysis, the core DEARGs (Caspase-1, CCL2, CTSB, and CXCR4) were obtained. The results of immunoinfiltration analysis showed that the counts of NK cells, M0 macrophages, M1 macrophages, and dendritic cells in the colonic mucosal tissue of UC patients had significant differences, and core DEARGs had significant correlations with these immune cells. This result, combined with the prediction results of network pharmacology, suggested that the HIF-1α signaling pathway may play a key role in the regulation of UC by Xiezhuo Jiedu prescription. The animal experiments showed that Xiezhuo Jiedu prescription significantly alleviated colonic mucosal inflammation in UC mice. Compared with the normal group, the model group showed up-regulated protein and mRNA levels of caspase-1, CCL2, CTSB, CXCR4, and HIF-1α, which were down-regulated after treatment with Xiezhuo Jiedu prescription or mesalazine. ConclusionCaspase-1, CCL2, CTSB, and CXCR4 are autophagy genes that are closely related to the onset of UC. Xiezhuo Jiedu prescription can down-regulate the expression of core autophagy genes to alleviate the inflammation in the colonic mucosa of mice.
2.Progress in animal model studies on chronic fatigue syndrome in military seafaring operations
Shuqi CAI ; Ying HE ; Wenhui WU ; Ruisang LIU ; Yunkai ZHANG ; Yong JIAO ; Xiaomeng REN
Journal of Environmental and Occupational Medicine 2025;42(3):373-378
Chronic fatigue syndrome (CFS) is a common problem in military maritime navigation, which greatly affects the safety of military missions. The use of animal models to carry out research on the mechanism of CFS and treatment measures is a common method. This paper systematically introduced the construction methods of CFS models such as single-factor and multi-factor models, summarized common evaluation indicators of CFS, including behavioral and biochemical indicators, and summed up key characteristics of CFS animal models in military oceanic navigation combined with common causes of CFS in military contexts, such as prolonged continuous work, high-intensity physical activity, sleep deprivation, psychological stress, and extreme environmental conditions. The key characteristics of the animal models included, but not limited to, chronic fatigue, sleep disorders, impaired cognitive function, psychological stress responses, and abnormal biochemical indicators. Furthermore, this article identified future research directions for CFS animal models in military oceanic navigation to enhance the application value of the models and provide robust support for the health protection and disease prevention of military personnel.
3.Key Information Research and Modern Clinical Application of Famous Classical Formula Yanghetang
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Shunxi WANG ; Ziwen WANG ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):238-246
Through data collection and collation combined with bibliometrics, this study conducted a series of textual research on Yanghetang, such as the name and origin, the evolution of prescription composition and modern clinical application. Yanghetang was first recorded in Bencao Yidu of WANG Ang in the Qing dynasty. In addition to Yanghetang, there were 3 bynames of Jiawei Yanghetang, Quanshengji Yanghetang and Zhenjun Yanghetang. Regarding the composition of the formula, a total of 4 versions of Yanghetang were collected. The first version is the 5 medicines version of Cervi Cornus Colla, Rehmanniae Radix Praeparata, Cinnamomi Cortex, Zingiberis Rhizoma and Ephedrae Herba in Bencao Yidu. The second version is the 7 medicines version of Waike Zhengzhi Quanshengji, changing Zingiberis Rhizoma to Zingiberis Rhizoma Praeparatum Carbonisata(ZRPC) and adding Sinapis Semen and Glycyrrhizae Radix et Rhizoma(GRR) on the basis of Bencao Yidu, and most of the Yanghetang is of this version. The third version is the 6 medicines version of Wushi Yifang Huibian, that is, on the basis of Bencao Yidu, Zingiberis Rhizoma is changed into ZRPC, and Sinapis Semen is added. The fourth version is the 6 medicines version in Yifang Jiedu, that is, on the basis of Bencao Yidu, Zingiberis Rhizoma is changed into Zingiberis Rhizoma Praeparatum, and GRR Praeparata cum Melle is added. Regarding the dose of Yanghetang, the doses of the medicines in Waike Zhengzhi Quanshengji was converted into the modern doses as follows:37.3 g of Rehmanniae Radix Praeparata, 1.87 g of Ephedrae Herba, 11.19 g of Cervi Cornus Colla, 7.46 g of Sinapis Semen, 3.73 g of Cinnamomi Cortex, 3.73 g of GRR, and 1.87 g of ZRPC. The origins of the above medicines are consistent with the 2020 edition of Chinese Pharmacopoeia. The processing specification of Rehmanniae Radix Praeparata is steaming method, ZRPC is ginger charcoal, Sinapis Semen is the fried products, and the rest of the medicines are raw products. The decoction method was verified by the decoction method in Chonglou Yuyao, which is similar in the time, and it is recommended that the above medicines should be added with 600 mL of water, decocted to 100 mL, and taken warmly 30 min after meal. For each dose, it is recommended to use 1-3 doses per day according to the doctor's advice in combination with clinical practice. The diseases involved in the ancient applications involved 42 diseases in 11 departments, including orthopedics, dermatology and gynecology, which were dominated by Yin-cold syndrome. However, the diseases involved in modern research also include 148 related diseases in 10 departments, such as orthopedics, obstetrics and gynecology, which is consistent with the ancient books. In recent years, the research hotspots of Yanghetang have focused on more than 10 fields, including osteoblasts, malignant tumors, wound healing, traditional Chinese medicine fumigation and so on, which are widely used. It is suitable for comprehensive research and development because of its rational formula composition, clear origin, processing and decoction method, and wide clinical application.
4.Mechanism of Xiezhuo Jiedu Formula in Treating Ulcerative Colitis Through Pyroptosis Regulation Based on Bioinformatics and Animal Experiments
Qiang CHUAI ; Wenjing ZHAI ; Shijie REN ; Xiaomeng LANG ; Xin KANG ; Wenli WEI ; Jingyuan LIU ; Jianping LIU ; Jie REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):105-113
ObjectiveThis study aims to explore the potential mechanism of the Xiezhuo Jiedu formula in regulating pyroptosis for the treatment of ulcerative colitis (UC) using bioinformatics and in vivo animal experiments. MethodsDifferentially expressed genes (DEGs) in colon tissues of UC patients were retrieved from the Gene Expression Omnibus (GEO) database. Pyroptosis-related genes were obtained from the GEO and GeneCards databases. The intersection of these datasets yielded pyroptosis-related DEGs (Pyro-DEGs). Pyro-DEGs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using the Metascape database. A protein-protein interaction (PPI) network was constructed using the STRING database. Least absolute shrinkage and selection operator (LASSO) prediction model and receiver operating characteristic (ROC) analysis were conducted to identify core Pyro-DEGs with diagnostic and therapeutic potential. Immune infiltration analysis of the UC datasets was performed using the deconvolution method (CIBERSORT), along with correlation analysis with core Pyro-DEGs. Sixty male Sprague-Dawley (SD) rats were randomly divided into a control group, a model group, high-, medium-, and low-dose groups of Xiezhuo Jiedu formula (26.64, 13.32, 6.66 g·kg-1), and a mesalazine group (0.27 g·kg-1), with 10 rats in each group. UC was established by intrarectal administration of 3,5-trinitrobenzenesulfonic acid (TNBS) dissolved in ethanol. The control and model groups were given distilled water by gavage, while the treatment groups were administered the corresponding drugs for 7 consecutive days. Hematoxylin-eosin (HE) staining was used to observe the colon histopathology. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of inflammatory factors such as interleukin-1β (IL-1β), IL-10, IL-18, and transforming growth factor-β (TGF-β). Immunohistochemistry (IHC) and Western blot were applied to detect the expression of Caspase-1, gap junction alpha-1 protein (GJA1), peroxisome proliferator-activated receptor gamma (PPARG), and S100 calcium-binding protein A8 (S100A8). Real-time quantitative polymerase chain reaction (Real-time PCR) was utilized to measure mRNA expression of Caspase-1, GJA1, PPARG, and S100A8. Western blot was performed to assess protein expression levels of Caspase-1, GJA1, PPARG, and S100A8. ResultsGEO datasets GSE87466 and GSE87473 yielded 64 Pyro-DEGs. KEGG analysis indicated that these genes were enriched in the NOD-like receptor signaling pathway, tumor necrosis factor (TNF) signaling pathway, and hypoxia-inducible factor 1 (HIF-1) signaling pathway. Four core Pyro-DEGs (Caspase-1, GJA1, PPARG, and S100A8) were identified. Immune infiltration analysis showed that expression of these genes was positively correlated with mast cells, neutrophils, M0 macrophages, M1 macrophages, and dendritic cells. Animal experimental results indicated that compared with the control group, the model group had significantly increased levels of IL-1β and IL-18, significantly decreased levels of IL-10 and TGF-β. The model group showed enhanced Caspase-1, GJA1, and S100A8 staining, and significantly increased mRNA and protein expression of Caspase-1, GJA1, and S100A8 (P<0.01). In contrast, the expression of PPARG was reduced in the model group (P<0.01). After treatment, all dosage groups showed varying degrees of improvement (P<0.05, P<0.01), with the high-dose group showing the most significant improvement (P<0.01). ConclusionCaspase-1, GJA1, PPARG, and S100A8 are core Pyro-DEGs closely associated with the pathogenesis of UC. These genes may collaborate with immune cells such as mast cells, neutrophils, and M0 macrophages to mediate disease development. The Xiezhuo Jiedu formula may regulate the expression of core Pyro-DEGs through the NOD-like receptor, TNF, and HIF-1 core signaling pathways, thereby modulating immune homeostasis in UC rats and effectively alleviating UC.
5.Historical Evolution and Modern Clinical Application of Huoxiang Zhengqisan
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Cuicui SHEN ; Congcong LI ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):156-167
In this study, bibliometric methods were used to systematically investigate the name and origin, the evolution of prescription composition, dose evolution, origin and processing method, decoction method, ancient application, modified application, modern application and other information of Huoxiang Zhengqisan. After research, Huoxiang Zhengqisan, also known as Huoxiang Zhengqitang, was first recorded in Taiping Huimin Hejijufang. The original formula is composed of 41.3 g of Arecae Pericarpium, 41.3 g of Angelicae Dahuricae Radix, 41.3 g of Perilla frutescens(actually Perillae Folium), 41.3 g of Poria, 82.6 g of Pinelliae Rhizoma, 82.6 g of Atractylodis Macrocephalae Rhizoma, 82.6 g of Citri Reticulatae Pericarpium(actually Citri Exocarpium Rubbum), 82.6 g of Magnoliae Officinalis Cortex, 82.6 g of Platycodonis Radix, 123.9 g of Pogostemonis Herba, and 103.25 g of Glycyrrhizae Radix et Rhizoma. In this formula, Magnoliae Officinalis Cortex is processed according to the specifications for ginger-processed products, Glycyrrhizae Radix et Rhizoma is processed according to the specifications for stir-fried products, and other herbs are used in their raw products. The botanical sources of the herbs are consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. The above herbs are ground into a fine powder with a particle size passing through a No. 5 sieve. For each dose, take 8.26 g of the powdered formula, add 300 mL of water, along with 3 g of Zingiberis Rhizoma Recens and 3 g of Jujubae Fructus, and decoct until reduced to 140 mL. The decoction should be administered hot, with three times daily. To induce sweating, the patient should be kept warm under a quilt, and an additional dose should be prepared and taken if needed. This formula is traditionally used to relieve the exterior and resolve dampness, regulate Qi and harmonize the middle, which is mainly used to treat a series of diseases of digestive and respiratory systems. However, potential adverse reactions, including allergies, purpura and disulfiram-like reactions, should be considered during clinical use. Huoxiang Zhengqisan features a rational composition, extensive clinical application, and strong potential for further research and development.
6.Historical Evolution and Modern Clinical Application of Huoxiang Zhengqisan
Weilu NIU ; Mengjie YANG ; Chengqi LYU ; Cuicui SHEN ; Congcong LI ; Huangchao JIA ; Liyun WANG ; Xuewei LIU ; Mingsan MIAO ; Xiaomeng WANG ; Yawei YAN ; Chunyong LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):156-167
In this study, bibliometric methods were used to systematically investigate the name and origin, the evolution of prescription composition, dose evolution, origin and processing method, decoction method, ancient application, modified application, modern application and other information of Huoxiang Zhengqisan. After research, Huoxiang Zhengqisan, also known as Huoxiang Zhengqitang, was first recorded in Taiping Huimin Hejijufang. The original formula is composed of 41.3 g of Arecae Pericarpium, 41.3 g of Angelicae Dahuricae Radix, 41.3 g of Perilla frutescens(actually Perillae Folium), 41.3 g of Poria, 82.6 g of Pinelliae Rhizoma, 82.6 g of Atractylodis Macrocephalae Rhizoma, 82.6 g of Citri Reticulatae Pericarpium(actually Citri Exocarpium Rubbum), 82.6 g of Magnoliae Officinalis Cortex, 82.6 g of Platycodonis Radix, 123.9 g of Pogostemonis Herba, and 103.25 g of Glycyrrhizae Radix et Rhizoma. In this formula, Magnoliae Officinalis Cortex is processed according to the specifications for ginger-processed products, Glycyrrhizae Radix et Rhizoma is processed according to the specifications for stir-fried products, and other herbs are used in their raw products. The botanical sources of the herbs are consistent with the 2020 edition of Pharmacopoeia of the People's Republic of China. The above herbs are ground into a fine powder with a particle size passing through a No. 5 sieve. For each dose, take 8.26 g of the powdered formula, add 300 mL of water, along with 3 g of Zingiberis Rhizoma Recens and 3 g of Jujubae Fructus, and decoct until reduced to 140 mL. The decoction should be administered hot, with three times daily. To induce sweating, the patient should be kept warm under a quilt, and an additional dose should be prepared and taken if needed. This formula is traditionally used to relieve the exterior and resolve dampness, regulate Qi and harmonize the middle, which is mainly used to treat a series of diseases of digestive and respiratory systems. However, potential adverse reactions, including allergies, purpura and disulfiram-like reactions, should be considered during clinical use. Huoxiang Zhengqisan features a rational composition, extensive clinical application, and strong potential for further research and development.
7.Characteristics of hospitalized injury cases in Huangpu District
MA Shuli ; DAI Ran ; YANG Chun ; HAO Xiaomeng ; LIU Jiacong ; WU Huaguo ; WU Mengqi
Journal of Preventive Medicine 2025;37(5):494-498,502
Objective:
To investigate the characteristics of hospitalized injury cases in Huangpu District, Guangzhou City in 2022, so as to provide evidence for optimizing injury prevention interventions.
Methods:
Data on hospitalized injury cases admitted between January to December 2022 were collected through the hospitalization registry system from 17 healthcare institutions in Huangpu District. The population distribution characteristics, causes of injury, injury sites, duration of hospital stay, and hospitalization costs were descriptively analyzed.
Results:
A total of 6 729 hospitalized injury cases were reported in Huangpu District in 2022, including 4 277 males and 2 452 females, with a male-to-female ratio of 1.74∶1. The average age was (49.57±19.82) years, with 2 064 cases (30.67%) aged 45 to <60 years and 1 921 cases (28.55%) aged ≥60 years. The median length of hospitalization was 9.00 (interquartile range, 11.00) days, with median hospitalization costs of 15 968.93 (interquartile range, 25 786.69) yuan. In the months of June to August, there were more cases of injury hospitalization,with 1 904 cases accounting for 28.30%. The top three causes of injury were falls (2 895 cases, 43.02%), transportation accidents (1 247 cases, 18.53%) and exposure to inanimate mechanical forces (1 104 cases, 16.41%). The top three injured sites were lower limb injuries (1 850 cases, 27.49%), upper limb injuries (1 596 cases, 23.72%) and other sites (1 178 cases, 17.51%). The three leading causes of injury with longest hospitalization duration were burns and scalds, transport accidents and falls, with the median duration being 12.00 (interquartile range, 8.00) days, 10.00 (interquartile range, 13.00) days and 10.00 (interquartile range, 11.00) days, respectively. The top three injury sites associated with the longest hospitalization duration were others, lower limb injuries, and head and neck injuries, with the median duration being 11.00 (interquartile range, 13.00) days, 11.00 (interquartile range, 11.00) days, and 10.00 (interquartile range, 12.00) days, respectively. The causes of injury associated with higher hospitalization costs were falls and transportation accidents, with the median hospitalization cost being 23 550.13 (interquartile range, 30 087.76) yuan for falls and 20 301.94 (interquartile range, 30 589.86) yuan for transportation accidents. The injury sites associated with higher hospitalization costs were lower limb injuries and upper limb injuries, with the median hospitalization cost being 24 257.32 (interquartile range, 34 145.54) yuan for lower limb injuries and 16 506.33 (interquartile range, 20 052.27) yuan for upper limb injuries.
Conclusions
In Huangpu District, hospitalized injury mainly occurred among males and individuals aged ≥45 years, with the higher incidence observed between June and August. Fall was the primary cause of injury, while lower limb injuries was the main injury sites. The injury resulted in substantially higher hospitalization costs.
8.Mechanism of Modified Guizhi Fulingwan in Regulating Mitochondrial Apoptosis Pathway Through PTEN/PI3K/Akt Pathway to Prevent Colorectal Adenoma in Mice
Sujie JIA ; Longhui LIU ; Yifan ZHANG ; Xiaomeng LANG ; Jianping LIU ; Xin KANG ; Chaodi SUN ; Jingyuan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(19):10-20
ObjectiveTo investigate the effect and mechanism of modified Guizhi Fulingwan in preventing colorectal adenoma (CRA) in mice by regulating mitochondrial apoptosis pathway through the regulation of the phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. MethodSixty SPF-grade male C57BL/6 mice were randomly divided into six groups: Normal group, model group, low, medium, and high dose groups of modified Guizhi Fulingwan (13, 26, 52 g·kg-1·d-1), and positive control aspirin group (0.015 g·kg-1·d-1). A mouse model of CRA was chemically induced using azoxymethane (AOM) and dextran sulfate sodium (DSS). During the modeling process, mice received modified Guizhi Fulingwan or aspirin. Body weight of mice was measured weekly during the treatment. After 9 weeks, the number of adenomas formed was observed. Serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were determined by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was used to observe the histopathologic changes in adenoma tissues. The expression of Cyclin D1 and proliferative nuclear antigen (Ki67) was detected by immunohistochemistry (IHC). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to assess the apoptosis in adenoma tissues. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to observe the mRNA and protein expression levels of PTEN, PI3K, Akt, phosphorylated PI3K (p-PI3K), phosphorylated Akt (p-Akt), B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), cytochrome C (Cyt C), Caspase-9, and caspase-3. ResultCompared with the normal group, the model group showed no significant change in body weight from week 1 to week 2, but a significant decrease from week 3 to week 9 (P<0.05,P<0.01). The colorectal length was significantly shortened, and the colorectal weight increased with visible varying sized tumor-like protrusions on the mucosal surface (P<0.01). Serum levels of TNF-α, IL-6, and IL-1β were elevated (P<0.01). Histopathology showed disordered epithelial gland structure, elongated nuclei with pathological mitosis, and numerous lymphocytic infiltrations in the lamina propria. The positive expression rates of Cyclin D1 and Ki67 were significantly increased (P<0.01), while the apoptosis rate of adenoma cells was significantly decreased (P<0.01). Expression levels of PI3K, Akt, Bcl-2 mRNA and proteins, as well as p-PI3K and p-Akt proteins, were significantly increased (P<0.01), whereas PTEN, Bax, Cyt C, Caspase-9, and Caspase-3 mRNA and protein levels were significantly decreased (P<0.05, P<0.01). Compared with the model group, all drug treatment groups showed an increase in body weight (P<0.01), decreased intestinal weight, increased colorectal length, reduced number of adenomas significantly (P<0.05, P<0.01), and significantly lowered serum levels of TNF-α, IL-6, and IL-1β (P<0.01). Histopathology indicated improved glandular structure and reduced neutrophil infiltration in the mucosal lamina propria. The positive expression rates of Cyclin D1 and Ki67 significantly decreased (P<0.01), while the apoptosis rate of adenoma cells significantly increased (P<0.05, P<0.01). Expression levels of PI3K, Akt, Bcl-2 mRNA and proteins, and p-PI3K and p-Akt proteins were significantly reduced (P<0.05, P<0.01), while PTEN, Bax, Cyt C, Caspase-9, and Caspase-3 mRNA and protein levels significantly increased (P<0.05, P<0.01). The high-dose modified Guizhi Fulingwan group exhibited the most significant intervention effects. ConclusionModified Guizhi Fulingwan may prevent CRA in mice by regulating the PTEN/PI3K/Akt signaling pathway and inducing the mitochondrial apoptosis pathway.
9.Research Progress on Traditional Chinese Medicine Interventions Targeting NF-κB Signaling Pathway to Improve Diabetic Nephropathy
Jiangfan GUO ; Xiaomeng WANG ; Qiu'e ZHANG ; Xiaochen LI ; Tonghua LIU ; Lili WU ; Lingling QIN ; Qingsong LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(20):241-251
Diabetic nephropathy (DN) is a chronic microvascular complication in diabetic patients and the main cause of end-stage renal disease (ESRD). Studies have shown that nuclear factor kappa-B (NF-κB) signaling pathway is involved in the pathological process of DN by activating pathological mechanisms such as inflammation, oxidative stress, fibrosis, apoptosis, autophagy, and pyroptosis. Therefore, blocking the transduction of NF-κB signaling pathway can help prevent and treat DN. Currently, western medical treatment involves strategies such as lowering blood sugar, blood pressure, and lipids, as well as using endothelin receptor antagonists, mineralocorticoid receptor antagonists, aldosterone synthase inhibitors, and other drugs, but they still cannot block the pathological process of DN. Traditional Chinese medicine (TCM) offers a simpler and more cost-effective approach that addresses both the symptoms and underlying causes of DN. Recent research has shown promising results in managing DN with TCM, and NF-κB, as a key factor, plays an important role in the prevention and treatment of DN. This article summarized the research results of TCM based on the NF-κB signaling pathway for the treatment of DN in the past five years. It described a variety of TCM extracts, such as polysaccharides, terpenes, phenols, flavonoids, saponins, and alkaloids, as well as TCM compound prescriptions such as Huaiqihuang granules, Astragalus mongholicus Bunge and Panax notoginseng formula, and Danzhi Jiangtang capsules, which regulated the NF-κB signaling pathway and its upstream and downstream factors to block the pathological process of DN. This inhibition aims to prevent renal pathological damage caused by DN and slow down the deterioration of renal function. The article aims to provide new ideas and references for the research and development of drugs for the prevention and treatment of DN.
10.Research Progress on Active Ingredients of Chinese Medicine Based on AMPK Signaling Pathway to Improve Insulin Resistance in T2DM
Xiaomeng WANG ; Peng YANG ; Xiaochen LI ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):247-255
Insulin resistance (IR) is an important pathological and physiological mechanism of type 2 diabetes (T2DM), and the treatment of IR has become the key to the prevention and treatment of T2DM. IR is a state of insensitivity or reduced sensitivity of insulin-stimulated tissue cells to glucose, resulting in cells that are unable to efficiently take up glucose in the bloodstream and thus causing hyperglycemia. Adenosine monophosphate-activated protein kinase (AMPK) is an energy-sensing enzyme that can regulate multiple metabolic pathways and maintain the stability of adenosine triphosphate (ATP) in the cell. In recent years, traditional Chinese medicine (TCM) has played an increasingly important role in the prevention and treatment of T2DM. The research on exploring the AMPK signaling pathway of TCM intervention in the progress of T2DM has gradually increased. Many pharmacological studies have shown that TCM has advantages such as safety and high efficiency in the prevention and treatment of T2DM. AMPK signaling pathway is one of the key pathways for the active ingredients of TCM and TCM extracts to improve IR. Active ingredients such as phenols, flavonoids, polysaccharides, alkaloids, and saponins, as well as other herbal extracts can improve IR by activating the AMPK signaling pathway cascade response, thereby improving IR by regulating glucolipid metabolism, inhibiting inflammatory response, anti-oxidative stress and maintaining mitochondrial homeostasis. Based on this, this paper reviews the pharmacological and experimental research results of TCM intervening the AMPK signaling pathway to improve IR in recent years, expecting to provide reference for further research, development and application of TCM in intervening IR and treating T2DM.


Result Analysis
Print
Save
E-mail