1.Effect of Serum Containing Zhenwutang on Apoptosis of Myocardial Mast Cells and Mitochondrial Autophagy
Wei TANG ; Meiqun ZHENG ; Xiaolin WANG ; Zhiyong CHEN ; Chi CHE ; Zongqiong LU ; Jiashuai GUO ; Xiaomei ZOU ; Lili XU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):11-21
ObjectiveTo explore the effect of serum containing Zhenwutang on myocardial mast cell apoptosis induced by angiotensin Ⅱ (AngⅡ) and the mechanism of the correlation between apoptosis and mitochondrial autophagy. MethodsIn this experiment, AngⅡ and serum containing Zhenwutang with different concentrations were used to interfere with H9C2 cardiomyocytes for 24 h, and the survival rate of H9C2 cardiomyocytes was detected by cell counting kit-8 (CCK-8) to screen the optimal concentration for the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of B-type natriuretic peptide (BNP) in cell culture supernatant, and immunofluorescence was used to detect the cell surface area to verify the construction of the myocardial mast cell model. Subsequently, the experiment was divided into a blank group (20% blank serum), a model group (20% blank serum + 5×10-5 mol·L-1 AngⅡ), low-, medium-, and high-dose (5%, 10% and 20%) serum containing Zhenwutang groups, an autophagy inhibitor group (1×10-4 mol·L-1 3-MA), and autophagy inducer group (1×10-7 mol·L-1 rapamycin). The apoptosis level of H9C2 cells and the changes of mitochondrial membrane potential were detected by flow cytometry. The lysosomal probe (Lyso Tracker) and mitochondrial probe (Mito Tracker) co-localization was employed to detect autophagy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-related X protein (Bax), and cytochrome C (Cyt C) in apoptosis-related pathways and the relative mRNA expression of ubiquitin ligase (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and p62 protein in mitochondrial autophagy-related pathways. Western blot was used to detect cleaved Caspase-3, cleaved Caspase-9, Bax, Bcl-2, and Cyt C in apoptosis-related pathways, phosphorylated ubiquitin ligase (p-Parkin), phosphorylated PTEN-induced kinase 1 (p-PINK1), p62, and Bcl-2 homology domain protein Beclin1 in mitochondrial autophagy-related pathways, and the change of microtubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ ratio. ResultsCCK-8 showed that when the concentration of AngⅡ was 5×10-5 mol·L-1, the cell activity was the lowest, and there was no cytotoxicity. At this concentration, the surface area of cardiomyocytes was significantly increased (P<0.01), and the content of BNP in the supernatant of culture medium was significantly increased (P<0.05). Therefore, AngⅡ with a concentration of 5×10-5 mol·L-1 was selected for the subsequent modeling of myocardial mast cells. Compared with the blank group, the model group and the autophagy inhibitor 3-MA group had a significantly increased apoptosis rate (P<0.01) and significantly decreased mitochondrial membrane potential (P<0.01). The results of immunofluorescence co-localization showed that compared with the blank group, the model group had a significantly decreased number of red and green fluorescence spots. The results of Real-time PCR showed that compared with that in the blank group, the relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 in the model group was significantly up-regulated (P<0.01), while the relative mRNA expression of Bcl-2, Parkin, and PINK1 was significantly down-regulated (P<0.01). In addition, the relative protein expression of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 was significantly up-regulated (P<0.01). The LC3Ⅱ/Ⅰ was significantly decreased, and the relative protein expression of Bcl-2, p-Parkin, p-PINK1, and Beclin1 was significantly down-regulated (P<0.01). Compared with the model group, the serum containing Zhenwutang groups and the autophagy inducer group had significantly decreased apoptosis rate (P<0.01), and the decrease ratio of mitochondrial membrane potential is significantly lowered (P<0.01) in a dose-dependent manner. Additionally, both red and green fluorescence spots became more in these groups. In the 3-MA group, the number of red and green fluorescence spots decreased significantly. The relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 was significantly down-regulated (P<0.05, P<0.01), while that of Bcl-2, Parkin, and PINK1 was significantly up-regulated (P<0.01). In the serum containing Zhenwutang groups, the relative protein expression levels of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 were significantly down-regulated (P<0.05,P<0.01). The LC3Ⅱ/Ⅰ was significantly increased, and the relative protein expression levels of Bcl-2, p-Parkin, p-PINK1, and Beclin1 were significantly up-regulated (P<0.01). ConclusionThe serum containing Zhenwutang can reduce the apoptosis of myocardial mast cells and increase mitochondrial autophagy. This is related to the inhibition of intracellular Bax/Bcl-2/Caspase-3 apoptosis pathway and regulation of Parkin/PINK1 mitochondrial autophagy pathway.
2.Knowledge, attitudes and practice regarding three major infectious diseases among freshmen in Jiangsu Province from 2019 to 2022
ZHANG Xiaolin, DU Guoping, CHEN Xiaoyan, LI Xiaoshan, WEI Yixuan, LI Yanhui, TAN Bingxin, YE Yuxiu
Chinese Journal of School Health 2025;46(2):205-209
Objective:
To understand the changing trends and related factors of knowledge, attitude and practice (KAP) regarding the three major infectious diseases (acquired immunodeficiency syndrome, tuberculosis, hepatitis B) among freshmen in Jiangsu from 2019 to 2022, so as to provide a reference basis for the health education of infectious diseases in schools.
Methods:
From 2019 to 2022, a total of 33 944 freshmen from 20 universities in Jiangsu Province were randomly selected for four consecutive years to investigate their KAP levels online through self designed questionnaires on three major infectious diseases. The multiple linear regression model was used to analyze the changing trends of students KAP levels of the three major infectious diseases, and to explore the influencing factors of KAP.
Results:
From 2019 to 2022, the knowledge scores(18.0±3.1,18.4±3.2,18.7±3.2,18.8±3.2), related to the three major infectious diseases showed an upward trend ( F=436.50, P <0.01), and the positive attitude reporting rates were 81.77%, 81.46%, 82.68% and 81.74%, respectively. The reporting rates of positive practice were 80.11%, 79.25%, 79.08 % and 79.04%, respectively. Multiple linear regression showed that school type, parental education level, mother s occupation, average income per person in family and living arrangements during high school all had an impact on the knowledge ( β = -1.510 -0.559), attitudes ( β =-0.043-0.065) and practice ( β =-0.028-0.027) of the three major infectious diseases ( P < 0.05 ). The family residence areas only affected the reporting rate of positive attitude scores ( β =0.002-0.065), and whether only children or not affected the reporting rate of positive practice scores ( β =0.009)( P <0.05). The knowledge score showed an upward trend ( β= 0.297, P <0.01), the positive attitude reporting rate showed no statistically significant change ( β=0.001, P =0.22), and the positive practice reporting rate showed a downward trend ( β=-0.005, P <0.01).
Conclusions
Freshman in Jiangsu Province from 2019 to 2022 have shown a separation in KAP scores regarding the three major infectious diseases. Targeted measures should be taken to improve their health practice level.
3.Gut microbiota and osteoporotic fractures
Wensheng ZHAO ; Xiaolin LI ; Changhua PENG ; Jia DENG ; Hao SHENG ; Hongwei CHEN ; Chaoju ZHANG ; Chuan HE
Chinese Journal of Tissue Engineering Research 2025;29(6):1296-1304
BACKGROUND:Osteoporotic fracture is the most serious complication of osteoporosis.Previous studies have demonstrated that gut microbiota has a regulatory effect on skeletal tissue and that gut microbiota has an important relationship with osteoporotic fracture,but the causal relationship between the two is unclear. OBJECTIVE:To explore the causal relationship between gut microbiota and osteoporotic fractures using Mendelian randomization method. METHODS:The genome-wide association study(GWAS)datasets of gut microbiota and osteoporotic fracture were obtained from the IEU Open GWAS database and the Finnish database R9,respectively.Using gut microbiota as the exposure factor and osteoporotic fracture as the outcome variable,Mendelian randomization analyses with random-effects inverse variance weighted,MR-Egger regression,weighted median,simple model,and weighted model methods were performed to assess whether there is a causal relationship between gut microbiota and osteoporotic fracture.Sensitivity analyses were performed to test the reliability and robustness of the results.Reverse Mendelian randomization analyses were performed to further validate the causal relationship identified in the forward Mendelian randomization analyses. RESULTS AND CONCLUSION:The results of this Mendelian randomization analysis indicated a causal relationship between gut microbiota and osteoporotic fracture.Elevated abundance of Actinomycetales[odds ratio(OR)=1.562,95%confidence interval(CI):1.027-2.375,P=0.037),Actinomycetaceae(OR=1.561,95%CI:1.027-2.374,P=0.037),Actinomyces(OR=1.544,95%CI:1.130-2.110,P=0.006),Butyricicoccus(OR=1.781,95%CI:1.194-2.657,P=0.005),Coprococcus 2(OR=1.550,95%CI:1.068-2.251,P=0.021),Family ⅩⅢ UCG-001(OR=1.473,95%CI:1.001-2.168,P=0.049),Methanobrevibacter(OR=1.274,95%CI:1.001-1.621,P=0.049),and Roseburia(OR=1.429,95%CI:1.015-2.013,P=0.041)would increase the risk of osteoporotic fractures in patients.Elevated abundance of Bacteroidia(OR=0.660,95%CI:0.455-0.959,P=0.029),Bacteroidales(OR=0.660,95%CI:0.455-0.959,P=0.029),Christensenellacea(OR=0.725,95%CI:0.529-0.995,P=0.047),Ruminococcaceae(OR=0.643,95%CI:0.443-0.933,P=0.020),Enterorhabdus(OR=0.558,95%CI:0.395-0.788,P=0.001),Eubacterium rectale group(OR=0.631,95%CI:0.435-0.916,P=0.016),Lachnospiraceae UCG008(OR=0.738,95%CI:0.546-0.998,P=0.048),and Ruminiclostridium 9(OR=0.492,95%CI:0.324-0.746,P=0.001)would reduce the risk of osteoporotic fractures in patients.We identified 16 gut microbiota associated with osteoporotic fracture by the Mendelian randomization method.That is,using gut microbiota as the exposure factor and osteoporotic fracture as the outcome variable,eight gut microbiota showed positive causal associations with osteoporotic fracture and another eight gut microbiota showed negative causal associations with osteoporotic fracture.The results of this study not only identify new biomarkers for the early prediction of osteoporotic fracture and potential therapeutic targets in clinical practice,but also provide an experimental basis and theoretical basis for the study of improving the occurrence and prognosis of osteoporotic fracture through gut microbiota in bone tissue engineering.
4.Ameliorative effects and mechanisms of an integrated endoplasmic reticulum stress inhibitor on lipopolysaccharide-induced cognitive impairment in mice.
Dandan LIU ; Wenjia LIU ; Lihua XIE ; Xiaofan XU ; Xiaolin ZHONG ; Wenyu CAO ; Yang XU ; Ling CHEN
Journal of Central South University(Medical Sciences) 2025;50(6):986-994
OBJECTIVES:
The integrated endoplasmic reticulum stress inhibitor (ISRIB) is a selective inhibitor of the protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway within endoplasmic reticulum stress (ERS) and can improve spatial and working memory in aged mice. Although ERS and oxidative stress are tightly interconnected, it remains unclear whether ISRIB alleviates cognitive impairment by restoring the balance between ERS and oxidative stress. This study aims to investigate the effects and mechanisms of ISRIB on lipopolysaccharide (LPS)-induced cognitive impairment in mice.
METHODS:
Eight-week-old male ICR mice were randomly divided into 3 groups: Normal saline (NS) group, LPS group, and ISRIB+LPS group. NS and LPS groups received daily intraperitoneal injections of normal saline for 7 days; on day 7, LPS group mice received intraperitoneal LPS (0.83 mg/kg) to establish a cognitive impairment model. ISRIB+LPS group received ISRIB (0.25 mg/kg) intraperitoneally for 7 days, with LPS injected 30 minutes after ISRIB on day 7. Cognitive ability was evaluated by the novel place recognition test (NPRT). Real-time fluorogenic quantitative PCR (RT-qPCR) was used to detect changes in nitric oxide synthase (NOS), superoxide dismutase-1 (SOD-1), and catalase (CAT) gene expression in the hippocampus and prefrontal cortex. Oxidative stress markers malondialdehyde (MDA), glutathione (GSH), and oxidized glutathione (GSSG), were measured in hippocampal and prefrontal cortex tissues.
RESULTS:
Compared with the NS group, mice in LPS group showed a significant reduction in novel place recognition ratio, upregulation of hippocampal NOS-1 and NOS-2 mRNA, downregulation of SOD-1 and CAT mRNA, increased MDA and GSSG, decreased GSH, and reduced GSH/GSSG ratio (all P<0.05). Compared with the LPS group, mice in ISRIB+LPS group exhibited significantly improved novel place recognition, downregulated NOS-1 and NOS-2 mRNA, upregulated SOD-1 and CAT mRNA, decreased MDA and GSSG, increased GSH, and an elevated GSH/GSSG ratio in the hippocampus (all P<0.05). No significant changes were observed in the prefrontal cortex.
CONCLUSIONS
ISRIB improves LPS-induced cognitive impairment in mice by restoring the oxidative/antioxidant balance in the hippocampus.
Animals
;
Lipopolysaccharides
;
Male
;
Mice, Inbred ICR
;
Cognitive Dysfunction/drug therapy*
;
Mice
;
Oxidative Stress/drug effects*
;
Endoplasmic Reticulum Stress/drug effects*
;
Hippocampus/drug effects*
;
Nitric Oxide Synthase Type II/genetics*
;
Guanidines/pharmacology*
;
eIF-2 Kinase/antagonists & inhibitors*
;
Signal Transduction/drug effects*
;
Superoxide Dismutase/metabolism*
5.Nanoengineered cargo with targeted in vivo Foxo3 gene editing modulated mitophagy of chondrocytes to alleviate osteoarthritis.
Manyu CHEN ; Yuan LIU ; Quanying LIU ; Siyan DENG ; Yuhan LIU ; Jiehao CHEN ; Yaojia ZHOU ; Xiaolin CUI ; Jie LIANG ; Xingdong ZHANG ; Yujiang FAN ; Qiguang WANG ; Bin SHEN
Acta Pharmaceutica Sinica B 2025;15(1):571-591
Mitochondrial dysfunction in chondrocytes is a key pathogenic factor in osteoarthritis (OA), but directly modulating mitochondria in vivo remains a significant challenge. This study is the first to verify a correlation between mitochondrial dysfunction and the downregulation of the FOXO3 gene in the cartilage of OA patients, highlighting the potential for regulating mitophagy via FOXO3 gene modulation to alleviate OA. Consequently, we developed a chondrocyte-targeting CRISPR/Cas9-based FOXO3 gene-editing tool (FoxO3) and integrated it within a nanoengineered 'truck' (NETT, FoxO3-NETT). This was further encapsulated in injectable hydrogel microspheres (FoxO3-NETT@SMs) to harness the antioxidant properties of sodium alginate and the enhanced lubrication of hybrid exosomes. Collectively, these FoxO3-NETT@SMs successfully activate mitophagy and rebalance mitochondrial function in OA chondrocytes through the Foxo3 gene-modulated PINK1/Parkin pathway. As a result, FoxO3-NETT@SMs stimulate chondrocytes proliferation, migration, and ECM production in vitro, and effectively alleviate OA progression in vivo, demonstrating significant potential for clinical applications.
6.Pediatric inflammatory bowel disease in mother‒child pairs: clinical risk factors and gut microbiota characteristics.
Cunzheng ZHANG ; Ruqiao DUAN ; Nini DAI ; Yuzhu CHEN ; Gaonan LI ; Xiao'ang LI ; Xiaolin JI ; Xuemei ZHONG ; Zailing LI ; Liping DUAN
Journal of Zhejiang University. Science. B 2025;26(10):995-1014
OBJECTIVES:
The risk factors and role of mother‒child gut microbiota in pediatric inflammatory bowel disease (PIBD) remain unclear. We aimed to explore the clinical risk factors associated with PIBD, analyze the characteristics of gut microbiota of children and their mothers, and examine the correlation of the microbial composition in mother‒child pairs.
METHODS:
We conducted a case-control study including children with PIBD and their mothers as the case group, as well as healthy children and their mothers as the control group. Questionnaires were used to collect information such as family illness history and maternal and early-life events. Fecal samples were collected from the children and mothers for microbiota 16S ribosomal RNA (rRNA) sequencing to analyze the composition and its potential association with PIBD.
RESULTS:
A total of 54 pairs of cases and 122 pairs of controls were recruited. A family history of autoimmune disease and antibiotic use during pregnancy were associated with an increased risk of PIBD, and a higher education level of the father was associated with a decreased risk of PIBD. Children with PIBD and mothers exhibited different gut microbiota compared to healthy children and mothers. Similarities were observed in the gut microbiota of mothers and children in the same groups. Some bacterial biomarkers of mothers discovered in this study had the power to predict PIBD in their offspring.
CONCLUSIONS
PIBD is influenced by maternal risk factors and has unique gut microbiota characteristics. The mother‒child gut microbiota is closely related, suggesting the transmission and influence of the gut microbiota between mothers and children. This study highlights the potential pathogenesis of PIBD and provides a basis for developing targeted interventions.
Humans
;
Gastrointestinal Microbiome
;
Female
;
Risk Factors
;
Case-Control Studies
;
Male
;
Child
;
Inflammatory Bowel Diseases/etiology*
;
Adult
;
RNA, Ribosomal, 16S/genetics*
;
Feces/microbiology*
;
Mothers
;
Pregnancy
;
Child, Preschool
7.Cortical Control of Itch Sensation by Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Anterior Cingulate Cortex.
Yiwen ZHANG ; Jiaqi LI ; You WU ; Jialin SI ; Yuanyuan ZHU ; Meng NIAN ; Chen CHEN ; Ningcan MA ; Xiaolin ZHANG ; Yaoyuan ZHANG ; Yiting LIN ; Ling LIU ; Yang BAI ; Shengxi WU ; Jing HUANG
Neuroscience Bulletin 2025;41(12):2184-2200
The anterior cingulate cortex (ACC) has recently been proposed as a key player in the representation of itch stimuli. However, to date, little is known about the contribution of specific ACC interneuron populations to itch processing. Using c-Fos immunolabeling and in vivo Ca2+ imaging, we reported that both histamine and chloroquine stimuli-induced acute itch caused a marked enhancement of vasoactive intestinal peptide (VIP)-expressing interneuron activity in the ACC. Behavioral data indicated that optogenetic and chemogenetic activation of these neurons reduced scratching responses related to histaminergic and non-histaminergic acute itch. Similar neural activity and modulatory role of these neurons were seen in mice with chronic itch induced by contact dermatitis. Together, this study highlights the importance of ACC VIP+ neurons in modulating itch-related affect and behavior, which may help us to develop novel mechanism-based strategies to treat refractory chronic itch in the clinic.
Animals
;
Pruritus/physiopathology*
;
Vasoactive Intestinal Peptide/metabolism*
;
Interneurons/metabolism*
;
Gyrus Cinguli/metabolism*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Histamine
;
Chloroquine
;
Optogenetics
;
Mice, Transgenic
8.Molluscicidal effect and costs of spraying pyriclobenzuron with drones against Pomacea canaliculata
Xiaolin ZHAO ; Ying CHEN ; Yanyue HU ; Yanggeng XU ; Youqi WANG ; Dan LÜ ; Chuanxu WAN ; Yang SUN ; Liping DUAN ; Weisi WANG ; Shuijin HUANG
Chinese Journal of Schistosomiasis Control 2024;36(5):441-449
Objective To evaluate the molluscicidal effects and costs of spraying 20% suspension concentrate of pyricloben-zuron sulphate (SCPS) with drones against Pomacea canaliculata in paddy environments, so as to provide insights into the extensive applications of pyriclobenzuron against P. canaliculata. Methods On July 2022, a paddy field was selected from Nanchang City, Jiangxi Province as the study area, and 72 independent rectangular plots measuring 2 m × 1 m were allocated in the study area, with 1 m interval between each plot, and 20 P. canaliculata snails gently placed in each plot. The activity of 25% wettable powder of pyriclobenzuron sulphate (WPPS) by manual spraying at doses of 0.50, 1.00, 2.00 g/m2 and 4.00 g/m2 against P. canaliculata was tested in 54 plots, and manual spraying of 50% wettable powder of niclosamide ethanolamine salt (WPNES) at a dose of 0.10 g/m2 served as a chemical control, while manual spraying of the same volume of clean water served as a blank control, with 9 plots in each group. The activity of SCPS against P. canaliculata was tested in the remaining 18 plots. Based on the molluscicidal tests of WPPS, the molluscicidal effect of SCPS by manual spraying at doses of 0.20, 0.30, 0.40 g/m2 and 0.50 g/m2 against P. canaliculata was evaluated, and manual spraying of WPNES at a dose of 0.10 g/m2 served as a chemical control, while manual spraying of the same volume of clean water served as a blank control, with three plots in each group. On July 2023, 14 paddy fields with a mean living P. canaliculata density of > 5 snails/m2 were selected from Yujiang District, Yingtan City, Jiangxi Province for molluscicidal tests. Based on the molluscicidal effect of pyriclobenzuron against P. canaliculata in plots, the molluscicidal effects of WPPS by manual spraying at doses of 0.25, 0.50 g/m2 and 1.00 g/m2 and manual applications of WPPS at dose of 0.25, 0.50, 1.00 g/m2 and 2.00 g/m2 mixed with soil were tested, and manual spraying of 0.10 g/m2 WPNES served as a chemical control group, while manual spraying of the same volume of clean water served as a blank control, with one paddy field in each group. Based on the effect of pyriclobenzuron against P. canaliculata in plots, the activity of SCPS sprayed with drones at doses of 0.25 g/m2 and 0.50 g/m2 mixed in water at 2 kg/667 m2 and 4 kg/667 m2 was tested against P. canaliculata, and spraying of the same volume of clean water with drones served as a blank control. All P. canaliculata snails were captured 3 days and 7 days following chemical treatment in plots and paddy fields and identified for survival, and the mortality and corrected mortality of P. canaliculata snails were estimated. In addition, the areas of chemical treatment, amount of molluscicide use and labor costs of chemical treatment were estimated in molluscicidal tests in paddy fields, and the costs of chemical treatment for an area covering 667 m2 by drones and manual applications were calculated. Results The mortality of P. canaliculata snails was all 100% in plots 3 days and 7 days following spraying WPPS at doses of 0.50, 1.00, 2.00 g/m2 and 4.00 g/m2, and the mortality rates of P. canaliculata snails were 66.67% to 100.00% 3 days post-treatment with SCPS at various doses (χ2 = 277.897, P < 0.05) and 76.67% to 100.00% 7 days post-treatment (χ2 = 274.206, P < 0.05). The mortality rates of P. canaliculata snails were 98.19% to 100.00% 3 days post-treatment with WPPS at various doses in paddy fields. There was a significant difference in the mortality of P. canaliculata snails among WPPS treatment groups and controls (χ2 = 270.778, P < 0.05), and there were no significant differences between WPPS treatment groups and the chemical control group (all P values > 0.05), while there were significant differences in the mortality of P. canaliculata snails between WPPS treatment groups and the blank control group (all P values < 0.05). The mortality rates of P. canaliculata snails were 89.83% to 95.31% 3 days post-treatment with SCPS at various doses sprayed with drones, and there was a significant difference in the mortality of P. canaliculata snails among SCPS treatment groups and the blank control group (χ2 = 1 132.892, P < 0.05). There were no significant differences in the mortality of P. canaliculata snails among SCPS treatment groups or water mixture groups (all P values > 0.05), and there were significant differences in the mortality of P. canaliculata snails between SCPS treatment groups and the blank control group (all P values < 0.05). The mortality rates of P. canaliculata snails were 94.62% to 100.00% 7 days post-treatment with SCPS at various doses sprayed with drones, and there was a significant difference in the mortality of P. canaliculata snails among SCPS treatment groups and the blank control group (χ2 = 1 266.932, P < 0.05), with the highest mortality found following spraying 0.50 g/m2 SCPS mixed in 2 kg/667 m2 water with drones (P < 0.05). The costs of P. canaliculata snail control by drones and manually were 35.85 Yuan/667 m2 and 43.33 Yuan/667 m2; however, the snail control efficiency was 6.67 times higher by drones than by manual applications. Conclusions SCPS sprayed with drones is highly active against P. canaliculata snails in paddy fields. SCPS sprayed with drones is highly efficient and low in cost for P. canaliculata snail control in paddy fields, beaches and river courses.
9.Moderating effect of salidroside on intestinal microbiota in mice exposed to PM2.5
Siqi LI ; Chen LIU ; Weihong XU ; Wenbo WU ; Ruixi ZHOU ; Limin ZHANG ; Chao SONG ; Yumei LIU ; Fengjiao TAN ; Mengxiao LUAN ; Xiaolin HAN ; Jinfeng TAN ; Li YU ; Dongqun XU ; Qin WANG ; Xiaohong LI ; Wanwei LI
Journal of Environmental and Occupational Medicine 2024;41(2):125-132
Background Salidroside (SAL) has a protective effect on multiple organ systems. Exposure to fine particulate matter (PM2.5) in the atmosphere may lead to disruptions in gut microbiota and impact intestinal health. The regulatory effect of SAL on the gut microbiota of mice exposed to PM2.5 requires further investigation. Objective To evaluate gut microbiota disruption in mice after being exposed to PM2.5 and the potential effect of SAL. Methods Forty male C57BL/6 mice, aged 6 to 8 weeks, were randomly divided into four groups: a control group, an SAL group, a PM2.5 group, and an SAL+PM2.5 group, each containing 10 mice. In the SAL group and the SAL+PM2.5 group, the mice were administered SAL (60 mg·kg−1) by gavage, while in the control group and the PM2.5 group, sterile saline (10 mL·kg−1) was administered by gavage. In the PM2.5 group and the SAL+PM2.5 group, PM2.5 suspension (8 mg·kg−1) was intratracheally instilled, and in the control group and SAL group, sterile saline (1.5 mL·kg−1) was intratracheally administered. Each experiment cycle spanned 2 d, with a total of 10 cycles conducted over 20 d. Histopathological changes in the ileum tissue of the mice were observed after HE staining. Colon contents were collected for gut microbiota sequencing and short-chain fatty acids (SCFAs) measurements. Results The PM2.5 group showed infiltration of inflammatory cells in the ileum tissue, while the SAL+PM2.5 group exhibited only a small amount of inflammatory cell infiltration. Compared to the control group, the PM2.5 group showed decreased Shannon index (P<0.05) and increased Simpson index (P<0.05), indicating that the diversity of gut microbiota in this group was decreased; the SAL+PM2.5 group showed increased Shannon index compared to the PM2.5 group (P<0.05) and decreased Simpson index (P<0.05), indicating that the diversity of gut microbiota in mice intervened with SAL was increased. The principal coordinates analysis (PCoA) revealed a significant separation between the PM2.5 group and the control group, while the separation trend was less evident among the control group, the SAL group, and the SAL+PM2.5 group. The unweighted pair-group method with arithmetic means (UPGMA) clustering tree results showed that the control group and the SAL group clustered together first, followed by clustering with the SAL+PM2.5 group, and finally, the three groups clustered with the PM2.5 group. The PCoA and UPGMA clustering results indicated that the uniformity and similarity of the microbiota in the PM2.5 group were significantly decreased. Compared to the control group, the PM2.5 group showed decreased abundance of phylum Bacteroidetes and Candidatus_Saccharimonas (P<0.05) and increased abundance of phylum Proteobacteria, genus Escherichia, genus Bacteroides, genus Prevotella, genus Enterococcus, and genus Proteus (P<0.05). Compared to the PM2.5 group, the SAL+PM2.5 group showed decreased abundance of phylum Proteobacteria, phylum Actinobacteria, genus Prevotella, and genus Proteus (P<0.05), and increased abundance of Candidatus_Saccharimonas (P<0.05). The PM2.5 group showed reduced levels of propionic acid, valeric acid, and hexanoic acid compared to the control group (P<0.05), while the SAL+PM2.5 group showed increased levels of propionic acid, isobutyric acid, butyric acid, valeric acid, and hexanoic acid compared to the PM2.5 group (P<0.05). Conclusion Exposure to PM2.5 can cause pathological alterations, microbial dysbiosis, and disturbing production of SCFAs in intestinal tissue in mice. However, SAL can provide a certain degree of protective effect against these changes.
10.Specific PCR for Identification of Astragalus membranaceus var. mongholicus Seeds, A. membranaceus Seeds, and Adulterants
Li LUO ; Li HU ; Chao JIANG ; Ziyuan CHEN ; Xiaolin LI ; Yuan YUAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):21-28
ObjectiveTo establish a method based on specific polymerase chain reaction (PCR) that can accurately and rapidly identify Astragalus membranaceus var. mongholicus (AMM) seeds and A. membranaceus (AM) seeds. MethodThe Chloroplast Genome Information Resource (CGIR) and IdenDSS were used to obtain the characteristic DNA fragments of AMM and AM, and the specific single nucleotide polymorphism (SNP) sites of AMM and AM were screened out, on the basis of which the specific primers MG-F/MG-R of AMM and MJ-F/MJ-R of AM were designed. The specific PCR method for identifying AMM and AM was established and optimized, and the specificity and applicability of the method were investigated. ResultThe specific PCR conditions for the identification of AMM were primers MG-F/MG-R, annealing at 62 ℃, and 28 cycles. After PCR amplification and gel electrophoresis, the specific band appeared at about 220 bp, with no band for the seeds of AM or adulterants. The specific PCR conditions for identifying the AM were primers MJ-F/MJ-R, annealing at 58 ℃, and 28 cycles. After PCR amplification and gel electrophoresis, the band appeared at about 150 bp, with no band of AMM or adulterants. ConclusionThe specific PCR method established in this study can accurately and quickly identify the seeds of AMM and AM, which provides a basis for the classification and accurate identification of Astragalus seeds and adulterants.


Result Analysis
Print
Save
E-mail