1.Development and Application of the Evidence Quality Rating Scale for Ancient Classical Prescriptions in Traditional Chinese Medicine
Juwen ZHANG ; Jianping LIU ; Xiangfei SU ; Wei WEI ; Xiaolan SU ; Xue FENG ; Fanya YU ; Xudong ZHANG ; Junhong YU ; Wei CHEN
Journal of Traditional Chinese Medicine 2025;66(8):804-810
ObjectiveTo develop the Evidence Grading Scale for Ancient classical prescriptions in Traditional Chinese medicine, assess its reliability and validity, and apply it in practice to provide multi-source evidence for clinical practice guidelines development. MethodsLiterature retrieval was conducted to extract and screen existing evaluation dimensions, then the initial items were summarized using thematic analysis. Experts in the clinical medicine, medical history and literature participated in the Delphi questionnaire survey to evaluate and refine the items. An expert consensus meeting was conducted to finalize the included items, refine the method for items evaluation and evidence grading. The evidence quality rating scale for ancient classical traditional Chinese medicine (TCM) prescriptions was then established and tested for reliability and validity. ResultsThrough literature review, extraction, screening and summarization, a total of 3 dimensions and 12 initial items were formed. Questionnaires were sent to 69 experts to evaluate the initial items, with a questionnaire response rate of 100% and an expert authority coefficient of 0.92. All 12 items were retained for they had importance scores above 4. The Evidence Grading Scale on Ancient classical prescriptions in Traditional Chinese medicine includes 3 dimensions with 12 items. The 3 dimensions includes ancient evidence, inheritance status, and modern application. Each dimension contains 4 items, and each item has a full score of 5 points. The evidence was rated as high-level, moderate-level, and low-level according to the final scores. The content validity index (CVI) of the 12 items was >0.9, the average CVI of the scale was 0.98, and the intraclass correlation coefficient (ICC) was 0.90. ConclusionThe Evidence Grading Scale on Ancient classical prescriptions in Traditional Chinese medicine has good reliability and validity, which is practical for use in the development of TCM clinical guidelines and can better support clinical decision-making.
2.Machine-learning-based models assist the prediction of pulmonary embolism in autoimmune diseases: A retrospective, multicenter study
Ziwei HU ; Yangyang HU ; Shuoqi ZHANG ; Li DONG ; Xiaoqi CHEN ; Huiqin YANG ; Linchong SU ; Xiaoqiang HOU ; Xia HUANG ; Xiaolan SHEN ; Cong YE ; Wei TU ; Yu CHEN ; Yuxue CHEN ; Shaozhe CAI ; Jixin ZHONG ; Lingli DONG
Chinese Medical Journal 2024;137(15):1811-1822
Background::Pulmonary embolism (PE) is a severe and acute cardiovascular syndrome with high mortality among patients with autoimmune inflammatory rheumatic diseases (AIIRDs). Accurate prediction and timely intervention play a pivotal role in enhancing survival rates. However, there is a notable scarcity of practical early prediction and risk assessment systems of PE in patients with AIIRD.Methods::In the training cohort, 60 AIIRD with PE cases and 180 age-, gender-, and disease-matched AIIRD non-PE cases were identified from 7254 AIIRD cases in Tongji Hospital from 2014 to 2022. Univariable logistic regression (LR) and least absolute shrinkage and selection operator (LASSO) were used to select the clinical features for further training with machine learning (ML) methods, including random forest (RF), support vector machines (SVM), neural network (NN), logistic regression (LR), gradient boosted decision tree (GBDT), classification and regression trees (CART), and C5.0 models. The performances of these models were subsequently validated using a multicenter validation cohort.Results::In the training cohort, 24 and 13 clinical features were selected by univariable LR and LASSO strategies, respectively. The five ML models (RF, SVM, NN, LR, and GBDT) showed promising performances, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.962-1.000 in the training cohort and 0.969-0.999 in the validation cohort. CART and C5.0 models achieved AUCs of 0.850 and 0.932, respectively, in the training cohort. Using D-dimer as a pre-screening index, the refined C5.0 model achieved an AUC exceeding 0.948 in the training cohort and an AUC above 0.925 in the validation cohort. These results markedly outperformed the use of D-dimer levels alone.Conclusion::ML-based models are proven to be precise for predicting the onset of PE in patients with AIIRD exhibiting clinical suspicion of PE.Trial Registration::Chictr.org.cn: ChiCTR2200059599.
3.Analysis of non-targeted variants by invasive prenatal diagnosis for pregnant women undergoing preimplantation genetic testing
Si LI ; Ziyi XIAO ; Chenyu GOU ; Xiaolan LI ; Yijuan HUANG ; Yuanqiu CHEN ; Shujing HE ; Zhiqiang ZHANG ; Zi REN ; Song GUO ; Weiying JIANG ; Yu GAO
Chinese Journal of Medical Genetics 2024;41(11):1283-1289
Objective:To compare the results of invasive prenatal diagnosis and preimplantation genetic testing (PGT) and explore the underlying mechanism.Methods:Clinical data of pregnant women undergoing PGT and invasive prenatal diagnosis at the Sixth Affiliated Hospital of Sun Yat-sen University from January 2019 to December 2022 were collected. The results of PGT and invasive prenatal diagnosis were compared, and the outcomes of pregnancies were followed up. This study has been approved by the Medical Ethics Committee of the the Sixth Affiliated Hospital of Sun Yat-sen University (No. 2022SLYEC-491).Results:A total of 172 couples were included in this study, and 26 non-targeted variants were discovered upon prenatal diagnosis, including 10 cases (38.5%) by chromosomal karyotyping, 15 (57.7%) by chromosomal microarray analysis (CMA), and 1 (3.8%) by whole exome sequencing. The 10 karyotypic anomalies had included 6 chromosomal polymorphisms, 2 chromosomal mosaicisms, 1 paternally derived translocation, and 1 missed maternal chromosomal inversion. CMA has identified 15 copy number variations (CNVs), which included 11 microdeletions and microduplications, 3 loss of heterozygosity, and 1 low-level mosaicism of paternal uniparental disomy. One CNV was classified as pathogenic, and another one was likely pathogenic, whilst the remaining 13 were classified as variants of uncertain significance. Therefore, 8.7% of CNVs was detected by invasive prenatal diagnosis after PGT. 92.3% (24/26) of the non-targeted variants have been due to technological limitations of next-generation sequencing (NGS).Conclusion:Invasive prenatal diagnosis after PGT can detect non-targeted variants, which may further reduce the incidence of birth defects.
4.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement.
Liyuan CHEN ; Huajie YU ; Zixin LI ; Yu WANG ; Shanshan JIN ; Min YU ; Lisha ZHU ; Chengye DING ; Xiaolan WU ; Tianhao WU ; Chunlei XUN ; Yanheng ZHOU ; Danqing HE ; Yan LIU
International Journal of Oral Science 2024;16(1):3-3
Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
Animals
;
Humans
;
Mice
;
Rats
;
Bone Remodeling/physiology*
;
Caspase 1
;
Periodontal Ligament
;
Pyroptosis
;
Tooth Movement Techniques
5.Analysis of the dosage form and taking characteristics of pediatric diseases in Tai Ping Sheng Hui Fang
Xuechun ZHAO ; Lan ZHANG ; Rongxin XIE ; Xiaolan YU
International Journal of Traditional Chinese Medicine 2024;46(3):273-277
The particularity of children's physiology and pathology determines that doctors should pay special attention to nursing in the process of treating pediatric diseases. This article discussed the dosage form and taking characteristics of pediatric prescriptions in Tai Ping Sheng Hui Fang from the aspects of dosage form and quantity, decoction, dosage, temperature, time, frequency and degree. It has been concluded that Tai Ping Sheng Hui Fang is rich in dosage forms, both internal and external treatment; paying attention to the care of the spleen and stomach, taking medicine in a light and specialized manner, and emphasizing the end of the disease; the way of taking medicine conforms to the physiological and pathological characteristics of children.
6.Host Targets Interacting with Influenza Virus NP and Mechanism of Gardenia Jasminoides Iridoid Glycoside Against Influenza Virus
Xiaowei YANG ; Lei BAO ; Yu ZHANG ; Xian LIU ; Zihan GENG ; Shuran LI ; Jingsheng ZHANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(13):60-66
ObjectiveTo explore host factors interacting with influenza virus nucleoprotein (NP) and study their effects on influenza virus replication, as well as the mechanism of gardenia jasminoides iridoid glycoside (IGE) in inhibiting influenza virus. MethodA yeast two-hybrid system was utilized to screen host factors that interacted with influenza virus NP. Heterogeneous nuclear ribonucleoprotein D0 (HNRNPD), glucosamine-6-phosphate deaminase 1 (GNPDA1), poly(rC)-binding protein 1 (PCBP1), and protein inhibitor of activated signal transducer and activator of transcription (STAT) protein 1 (PIAS1) were validated by immunoprecipitation assay. The effects of PIAS1 and HNRNPD on influenza virus replication were compared by a dual luciferase assay, and the effects of IGE on influenza virus replication were examined in the presence of transfected ribonucleoprotein (RNP) and knockdown of PIAS1. ICR mice were randomly divided into a normal group, model group, oseltamivir phosphate group, and high, medium, and low dose IGE groups, with 10 mice in each group. In addition to the normal group, each group was infected with the influenza A virus FM1 strain by nasal drip to establish a viral pneumonia model. The high, medium, and low dose IGE groups were given drugs of 50, 25, and 12.5 mg∙kg-1 by gavage, and the oseltamivir phosphate group was given the drug of 27.5 mg∙kg-1 by gavage. Equal amounts of distilled water were instilled in the normal and model groups for four consecutive days. Later, protein expression of PIAS1, NP, phosphorylated (p)-STAT3, STAT3, p-STAT1, and STAT1 were detected in the lung tissue by Western blot. ResultIn yeast two-hybrid assays, 16 potential host targets interacting with influenza virus NP were identified. Immunoprecipitation experiments revealed that HNRNPD and PIAS1 could interact with influenza virus NP. The dual luciferase reporter assays found that both PIAS1 knockdown and overexpression significantly affected IAV RNP activity (P<0.05, P<0.01), and the effect of HNRNPD on IAV RNP was not significant. Both high and low dose IGE groups reduced influenza virus replication (P<0.05) and reversed the increase in influenza virus replication caused by the knockdown of PIAS1(P<0.05, P<0.01). The expressions of PIAS1, NP, p-STAT3, p-STAT1, and STAT1 in the lung tissue of infected mice were reduced to different degrees in each IGE group (P<0.05, P<0.01). ConclusionPIAS1 interacts with influenza virus NP and is able to inhibit influenza virus replication. IGE may exert antiviral effects by inhibiting the activity of IAV RNP through the PIAS1/STAT1 pathway.
7.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
8.Effect of Influenza A Virus on BEAS-2B in Human Lung Epithelial Cells and Intervention Effect of Shufeng Jiedu Capsule-containing Serum
Shan CAO ; Zihan GENG ; Lei BAO ; Yingli XU ; Bo PANG ; Jingsheng ZHANG ; Yu ZHANG ; Mengping CHEN ; Yaxin WANG ; Ronghua ZHAO ; Shanshan GUO ; Xiaolan CUI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):90-97
ObjectiveTo observe the effect of Shufeng Jiedu capsule (SFJD)-containing serum on human lung epithelial cells infected by influenza A virus, and investigate the protective effect of the drug on the cells and the potential antiviral effect. MethodThe SFJD-containing serum was prepared and used to treat human lung epithelial cells (BEAS-2B) cultured in vitro. The viability of cells treated with different concentrations of SFJD-containing serum was measured by the cell counting kit-8 (CCK-8), and the optimal concentration of SFJD-containing serum was screened for subsequent experiments. BEAS-2B cells were classified into normal control, virus infection, and SFJD-containing serum groups, and the CCK-8 method was used to detect the survival rate of BEAS-2B cells after virus infection and drug administration. The expression of influenza virus nucleic acid in the cells of each group was determined, and the apoptosis of cells in different groups was observed by fluorescence microscopy. Real-time PCR was employed to determine the mRNA levels of influenza virus nucleoprotein (NP), Toll-like receptor 4 (TLR4), and myeloid differentiation primary response gene 88 (MyD88) in each group of cells. The immunofluorescence assay was used to detect the fluorescence intensities of TLR4, MyD88, and phosphorylated nuclear factor-κB (p-NF-κB) in lung epithelial cells. ResultCompared with that in the control group (normal serum), the cell survival rates in the blank serum and the SFJD-containing serum (5%, 10%, and 20%) groups were 100.00%±0.00%, 89.05%±4.80%, 87.13%±5.90%, 93.83%±6.03%, and 99.33%±3.39%, respectively (P<0.01). The SFJD-containing serum of 20% was selected as the optimal treatment for subsequent experiments. Compared with the normal control group, the virus infection group showed reduced cell survival rate (P<0.01), and the reduction was increased by the SFJD-containing serum (P<0.01). Compared with the virus infection group, SFJD-containing serum reduced the virus load (P<0.01) to decrease apoptosis. Compared with the normal control group, the virus infection group showed up-regulated mRNA levels of NP, TLR4, and MyD88 (P<0.01), and the up-regulation was down-regulated by the SFJD-containing serum (P<0.05, P<0.01). The fluorescence intensities of TLR4, MyD88, and p-NF-κB proteins in the cells increased after virus infection compared with those in the normal control (P<0.05, P<0.01), and they were decreased after administration with the SFJD-containing serum (P<0.05). ConclusionThe SFJD-containing serum can inhibit influenza virus in vitro by increasing the survival rate, reducing the apoptosis, and down-regulating the protein levels of TLR4, MyD88, and p-NF-κB in BEAS-2B cells.
9.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
10.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.

Result Analysis
Print
Save
E-mail