1.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
2.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
3.Optimization of simmering technology of Rheum palmatum from Menghe Medical School and the changes of chemical components after processing
Jianglin XUE ; Yuxin LIU ; Pei ZHONG ; Chanming LIU ; Tulin LU ; Lin LI ; Xiaojing YAN ; Yueqin ZHU ; Feng HUA ; Wei HUANG
China Pharmacy 2025;36(1):44-50
OBJECTIVE To optimize the simmering technology of Rheum palmatum from Menghe Medical School and compare the difference of chemical components before and after processing. METHODS Using appearance score, the contents of gallic acid, 5-hydroxymethylfurfural (5-HMF), sennoside A+sennoside B, combined anthraquinone and free anthraquinone as indexes, analytic hierarchy process (AHP)-entropy weight method was used to calculate the comprehensive score of evaluation indicators; the orthogonal experiment was designed to optimize the processing technology of simmering R. palmatum with fire temperature, simmering time, paper layer number and paper wrapping time as factors; validation test was conducted. The changes in the contents of five anthraquinones (aloe-emodin, rhein, emodin, chrysophanol, physcion), five anthraquinone glycosides (barbaloin, rheinoside, rhubarb glycoside, emodin glycoside, and emodin methyl ether glycoside), two sennosides (sennoside A, sennoside B), gallic acid and 5-HMF were compared between simmered R. palmatum prepared by optimized technology and R. palmatum. RESULTS The optimal processing conditions of R. palmatum was as follows: each 80 g R. palmatum was wrapped with a layer of wet paper for 0.5 h, simmered on high heat for 20 min and then simmered at 140 ℃, the total simmering time was 2.5 h. The average comprehensive score of 3 validation tests was 94.10 (RSD<1.0%). After simmering, the contents of five anthraquinones and two sennosides were decreased significantly, while those of 5 free anthraquinones and gallic acid were increased to different extents; a new component 5-HMF was formed. CONCLUSIONS This study successfully optimizes the simmering technology of R. palmatum. There is a significant difference in the chemical components before and after processing, which can explain that simmering technology slows down the relase of R. palmatum and beneficiate it.
4.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
5.Arterial stiffness in subclinical atherosclerosis quantified with ultrafast pulse wave velocity measurements: a comparison with a healthy population using propensity score matching
Xuezhong JIANG ; Weiming GE ; Hui HUANG ; Yating LI ; Xiaojing LIU ; Huiyan PANG ; Rui HE ; Hui WANG ; Zhengqiu ZHU ; Ping HE ; Yinping WANG ; Xuehui MA ; Airong REN ; Bixiao SHEN ; Meijuan WANG
Ultrasonography 2024;43(4):263-271
Purpose:
This study aimed to evaluate changes in ultrafast pulse wave velocity (ufPWV) in individuals with arterial stiffness and subclinical atherosclerosis (subAS), and to provide cutoff values.
Methods:
This retrospective study recruited 231 participants, including 67 patients with subAS. The pulse wave velocity was measured at the beginning and end of systole (PWV-BS and PWVES, respectively) using ultrafast ultrasonography to assess arterial stiffness. The right and left common carotid arteries were measured separately, and laboratory metabolic parameters were also collected. Participants were balanced between groups using propensity score matching (PSM) at a 1:1 ratio, adjusting for age, sex, and waist-to-hip ratio as potential confounders. Cutoff values of ufPWV for monitoring subAS were determined via receiver operating characteristic (ROC) curve analysis.
Results:
PWV-ES, unlike PWV-BS, was higher in the subAS subgroup than in the subAS-free group after PSM (all P<0.05). For each 1 m/s increase in left, right, and bilateral mean PWV-ES, the risk of subAS increased by 23% (95% confidence interval [CI], 1.04 to 1.46), 26% (95% CI, 1.07 to 1.52), and 38% (95% CI, 1.12 to 1.72), respectively. According to ROC analyses, predictive potential was found for left PWV-ES (cutoff value=7.910 m/s, P=0.002), right PWV-ES (cutoff value=6.615 m/s, P=0.003), and bilateral mean PWV-ES (cutoff value=7.415 m/s, P<0.001), but not for PWV-BS (all P>0.05).
Conclusion
PWV-ES measured using ultrafast ultrasonography was significantly higher in individuals with subAS than in those without. Specific PWV-ES cutoff values showed potential for predicting an increased risk of subAS.
6.Brain functioning after anterior cruciate ligament reconstruction
Hongyun SONG ; Sunan ZHU ; Yuanqing SHEN ; Hangjun LOU ; Fangyao XIE ; Xiaojing YU ; Xuesong DAI
Chinese Journal of Physical Medicine and Rehabilitation 2024;46(6):544-548
Objective:To explore the remodeling of brain function 2 years after anterior cruciate ligament reconstruction (ACLR) and its relationship with functioning and behavior.Methods:Forty-eight volunteers who had received ACLR from the same surgeon were divided into a coping and a non-coping group, each of 17. Another 14 health volunteers formed the control group. Resting-state functional magnetic resonance imaging was used to record blood oxygen level-dependent signals from the members of all three groups in the 0.01 to 0.08Hz band. One-way analysis of variance was applied to the differences in low frequency amplitude (ALFF) observed.Results:The results of multiple comparisons with Gaussian random field theory correction showed that the differences in bilateral putamen ALFF values among the three groups were statistically significant. The signals from the right cerebellar area 8 and the bilateral putamen were significantly stronger among the non-coping group on average. Pearson correlation analysis showed that the ALFF values from the right cerebellar 8 region were positively and significantly more correlated with the symmetry of a subject′s Y balance function test results in the coping group compared with the non-coping group.Conclusions:Subcortical brain function remodeling occurs in ACLR patients returning to exercise after surgery, and a Y-balance function test can indirectly reflect such remodeling. That can provide a basis for designing programs for rehabilitating advanced brain functions.
7.Quality analysis of medical records of critical patients in a tertiary hospital
Yanyan ZHU ; Xiaojing HE ; Yuying LU ; Qinghai LIU
Modern Hospital 2024;24(9):1381-1383,1387
Objective According to a random check of the hospital's critical medical records,classify and summarize the results,analyze the existing problems and their causes,seek to improve the quality of medical record writing measures.Methods 330 out of 1 117 critically medical records discharged from December 1,2022 to November 30,2023 were extracted.According to the related regulations and requirements of Medical Record Writing Standard(2010),Key Points of Medical Quality and Safety Core System,the Quality Specification for Filling in Front Page Data(Temporary)and Family Planning Commission,special quality control was carried out on the key items filled in on the medical record based on the actual situation of the hospital.Results Among the 330 critically ill medical records sampled,45.15%had defects,among which 56.38%had defects in the first page of medical records,and 25.50%had defects in the course of disease.In the first page of medical records with the high-est rate of defects,the most common defects were the missing and wrong filling of the basic information on the first page,which accounted for 28.57%of the total number of defects,followed by the missing filling of the transferred departments,11.90%of the total number of information defects in the first page of medical records,and 10.71%of the total number of errors in filling in the intensive-care unit records and in choosing the main diagnosis were equal.Conclusion The defect content of critical medical record is concentrated on the information of the first page of medical record,the course of disease,the record of discharge(death),the informed consent and the authorization letter,it is suggested that we should strengthen doctors'legal awareness,optimize the function of information system,strengthen the coordination between departments,strengthen the training of medical record writing and pursue the responsibility of rewards and punishments,strengthen the management of the quality of critical pa-tients'medical records,and improve the overall quality of medical records.
8.Arterial stiffness in subclinical atherosclerosis quantified with ultrafast pulse wave velocity measurements: a comparison with a healthy population using propensity score matching
Xuezhong JIANG ; Weiming GE ; Hui HUANG ; Yating LI ; Xiaojing LIU ; Huiyan PANG ; Rui HE ; Hui WANG ; Zhengqiu ZHU ; Ping HE ; Yinping WANG ; Xuehui MA ; Airong REN ; Bixiao SHEN ; Meijuan WANG
Ultrasonography 2024;43(4):263-271
Purpose:
This study aimed to evaluate changes in ultrafast pulse wave velocity (ufPWV) in individuals with arterial stiffness and subclinical atherosclerosis (subAS), and to provide cutoff values.
Methods:
This retrospective study recruited 231 participants, including 67 patients with subAS. The pulse wave velocity was measured at the beginning and end of systole (PWV-BS and PWVES, respectively) using ultrafast ultrasonography to assess arterial stiffness. The right and left common carotid arteries were measured separately, and laboratory metabolic parameters were also collected. Participants were balanced between groups using propensity score matching (PSM) at a 1:1 ratio, adjusting for age, sex, and waist-to-hip ratio as potential confounders. Cutoff values of ufPWV for monitoring subAS were determined via receiver operating characteristic (ROC) curve analysis.
Results:
PWV-ES, unlike PWV-BS, was higher in the subAS subgroup than in the subAS-free group after PSM (all P<0.05). For each 1 m/s increase in left, right, and bilateral mean PWV-ES, the risk of subAS increased by 23% (95% confidence interval [CI], 1.04 to 1.46), 26% (95% CI, 1.07 to 1.52), and 38% (95% CI, 1.12 to 1.72), respectively. According to ROC analyses, predictive potential was found for left PWV-ES (cutoff value=7.910 m/s, P=0.002), right PWV-ES (cutoff value=6.615 m/s, P=0.003), and bilateral mean PWV-ES (cutoff value=7.415 m/s, P<0.001), but not for PWV-BS (all P>0.05).
Conclusion
PWV-ES measured using ultrafast ultrasonography was significantly higher in individuals with subAS than in those without. Specific PWV-ES cutoff values showed potential for predicting an increased risk of subAS.
9.Arterial stiffness in subclinical atherosclerosis quantified with ultrafast pulse wave velocity measurements: a comparison with a healthy population using propensity score matching
Xuezhong JIANG ; Weiming GE ; Hui HUANG ; Yating LI ; Xiaojing LIU ; Huiyan PANG ; Rui HE ; Hui WANG ; Zhengqiu ZHU ; Ping HE ; Yinping WANG ; Xuehui MA ; Airong REN ; Bixiao SHEN ; Meijuan WANG
Ultrasonography 2024;43(4):263-271
Purpose:
This study aimed to evaluate changes in ultrafast pulse wave velocity (ufPWV) in individuals with arterial stiffness and subclinical atherosclerosis (subAS), and to provide cutoff values.
Methods:
This retrospective study recruited 231 participants, including 67 patients with subAS. The pulse wave velocity was measured at the beginning and end of systole (PWV-BS and PWVES, respectively) using ultrafast ultrasonography to assess arterial stiffness. The right and left common carotid arteries were measured separately, and laboratory metabolic parameters were also collected. Participants were balanced between groups using propensity score matching (PSM) at a 1:1 ratio, adjusting for age, sex, and waist-to-hip ratio as potential confounders. Cutoff values of ufPWV for monitoring subAS were determined via receiver operating characteristic (ROC) curve analysis.
Results:
PWV-ES, unlike PWV-BS, was higher in the subAS subgroup than in the subAS-free group after PSM (all P<0.05). For each 1 m/s increase in left, right, and bilateral mean PWV-ES, the risk of subAS increased by 23% (95% confidence interval [CI], 1.04 to 1.46), 26% (95% CI, 1.07 to 1.52), and 38% (95% CI, 1.12 to 1.72), respectively. According to ROC analyses, predictive potential was found for left PWV-ES (cutoff value=7.910 m/s, P=0.002), right PWV-ES (cutoff value=6.615 m/s, P=0.003), and bilateral mean PWV-ES (cutoff value=7.415 m/s, P<0.001), but not for PWV-BS (all P>0.05).
Conclusion
PWV-ES measured using ultrafast ultrasonography was significantly higher in individuals with subAS than in those without. Specific PWV-ES cutoff values showed potential for predicting an increased risk of subAS.
10.Impact of inhibiting aquaporin 4 expression on autophagy and apoptosis in a mouse model of cerebral ischemia-reperfusion
Shenglong MO ; Haiyan ZHU ; Zhicheng LU ; Jiaqi MO ; Xiaojing PENG ; Lina TANG ; Chengmin YANG ; Chongdong JIAN ; Jingwei SHANG
Chinese Journal of Pathophysiology 2024;40(8):1446-1454
AIM:To investigate the impact of aquaporin 4(AQP4)expression inhibition on autophagy and apoptosis in a mouse model of cerebral ischemia-reperfusion(I/R)injury,and to elucidate its underlying mechanism.METHODS:Cerebral I/R injury was induced in mice via transient middle cerebral artery occlusion(tMCAO).Totally 60 mice were randomly divided into sham group,I/R group,AQP4 inhibition group,and 3-methyladenine(3-MA)group,with 15 mice in each group.Among them,the mice in sham and I/R groups received intraperitoneal injections of normal saline,while those in AQP4 inhibition group and 3-MA group received intraperitoneal injections of AER-271(2 mg·kg-1·d-1)and AER-271+3-MA(2 mg·kg-1·d-1)for 3 d,respectively,once per day.Longa score was adopted to assess the neu-rological function,and to record changes in body weight.Cerebral infarction volume and histopathological alterations were evaluated using hematoxylin-eosin staining.Western blot analysis was performed to determine the levels of AQP4,LC3-Ⅱ,P62 and cleaved caspase-3,while the LC3-Ⅱ,P62,cleaved caspase-3 and NeuN(neuronal marker)colocalization and expression assessment were conducted with immunofluorescence.RESULTS:The mice in I/R and AQP4 inhibition groups exhibited extensive cerebral infarction,cerebral edema,and elevated Longa scores.However,in comparision to I/R group,the mice in AQP4 inhibition group showed significantly reduced cerebral infarct volume,cerebral edema vol-ume,and Longa score(P<0.05).Additionally,in contrast to sham group,the mice in I/R group displayed increased ex-pression of AQP4,LC3-Ⅱ and cleaved caspase-3(P<0.01),accompanied by decreased body weight and P62 expression(P<0.05 or P<0.01).Furthermore,compared with I/R group,the mice in both AQP4 inhibition group and 3-MA group demonstrated a decrease in the expression levels of AQP4,LC3-Ⅱ and cleaved caspase-3(P<0.05 or P<0.01),along with increased body weight and P62 expression(P<0.05 or P<0.01).Nonetheless,no significant differences were ob-served between AQP4 inhibition group and 3-MA group regarding Longa score,cerebral infarct volume,body weight,and the expression of AQP4,LC3-Ⅱ,cleaved caspase-3 and P62.CONCLUSION:Inhibition of AQP4 expression signifi-cantly reduces cerebral infarction area and nerve injury severity in tMCAO mice.Moreover,AQP4 expression inhibition decelerates autophagy and apoptosis after cerebral infarction,with the additional autophagy inhibitor showing no notable impact on the protective effect of AQP4 inhibition.

Result Analysis
Print
Save
E-mail