1.Investigation and risk factors analysis of hypertensive retinopathy patients in Zhangjiakou city
Jia ZHANG ; Yanli WANG ; Xiaocong SONG ; Shuzhen WANG
Basic & Clinical Medicine 2024;44(6):853-857
Objective To investigate the situation and risk factors of hypertensive retinopathy in Zhangjiakou city.Methods The residents from 19 counties and districts in Zhangjiakou were screened for hypertension and blood glucose level.Blood pressure,age,gender,course of disease,body mass index(BMI)and complications of the patients were collected by a questionnaire survey.The prevalence of hypertensive retinopathy was analyzed and the risk factors affecting the patients were analyzed.Results A total of 1 320 hypertension patients were found in 8 056 residents with prevalence rate as 16.39%(1 320/8 056)and 212 of the hypertensive patients were found to have retinopathy.The prevalence rate of retinopathy was 13.06%(212/1 320)in hypertensive patients and 2.63%in all the examined residents.The proportion of patients aged≥60 was higher than that of patients aged<60 years old,the proportion of patients without hypertension treatment history was higher than that of patients with hypertension treatment history(P<0.05).The disease course,systolic blood pressure,diastolic blood pressure,diabetes and smoking history in the patient group were higher than those in the control group(P<0.05).Long hypertension course of disease,high systolic and diastolic blood pressure and diabetes history were risk factors for the occurrence of hypertensive retinopathy(P<0.05).Conclusions The incidence hypertensive retinopathy in 19 counties and districts of Zhangjiakou city is low but is high among residents aged≥60 years.The risk factors are long course of disease,high systolic and diastolic blood pressure and diabetes history.
2.The value of single-cell sequencing in oral squamous cell carcinoma research
China Oncology 2024;34(5):501-508
Single-cell sequencing(SCS)has great potential in oral squamous cell carcinoma(OSCC)research.With the development of SCS technology,its sensitivity and accuracy are gradually increasing,while its cost is gradually decreasing.SCS is poised to become a crucial technological tool in cancer research.SCS technology provides significant assistance in the discovery of new cell-specific markers and cell types by identifying differential gene expression and epigenetic information alterations caused by genomic mutations at the resolution of a single cell.In OSCC studies,SCS not only helps unveil the heterogeneity of cancer cells and provides more accurate understanding of the tumor microenvironment,but also facilitates a deeper exploration of the interactions between OSCC cells,immune cells and stromal cells.This sheds light on their mutual influences and roles in tumor initiation and progression.Utilizing SCS to classify immune cells in tumors and comprehend immune escape mechanisms is pivotal for the effective development of immunotherapy.This comprehensive review outlined the current status of SCS technology development and discussed its latest research advancements and prospective applications in the field of OSCC.
3.Chinese consensus guidelines for therapeutic drug monitoring of polymyxin B, endorsed by the Infection and Chemotherapy Committee of the Shanghai Medical Association and the Therapeutic Drug Monitoring Committee of the Chinese Pharmacological Society.
Xiaofen LIU ; Chenrong HUANG ; Phillip J BERGEN ; Jian LI ; Jingjing ZHANG ; Yijian CHEN ; Yongchuan CHEN ; Beining GUO ; Fupin HU ; Jinfang HU ; Linlin HU ; Xin LI ; Hongqiang QIU ; Hua SHAO ; Tongwen SUN ; Yu WANG ; Ping XU ; Jing YANG ; Yong YANG ; Zhenwei YU ; Bikui ZHANG ; Huaijun ZHU ; Xiaocong ZUO ; Yi ZHANG ; Liyan MIAO ; Jing ZHANG
Journal of Zhejiang University. Science. B 2023;24(2):130-142
Polymyxin B, which is a last-line antibiotic for extensively drug-resistant Gram-negative bacterial infections, became available in China in Dec. 2017. As dose adjustments are based solely on clinical experience of risk toxicity, treatment failure, and emergence of resistance, there is an urgent clinical need to perform therapeutic drug monitoring (TDM) to optimize the use of polymyxin B. It is thus necessary to standardize operating procedures to ensure the accuracy of TDM and provide evidence for their rational use. We report a consensus on TDM guidelines for polymyxin B, as endorsed by the Infection and Chemotherapy Committee of the Shanghai Medical Association and the Therapeutic Drug Monitoring Committee of the Chinese Pharmacological Society. The consensus panel was composed of clinicians, pharmacists, and microbiologists from different provinces in China and Australia who made recommendations regarding target concentrations, sample collection, reporting, and explanation of TDM results. The guidelines provide the first-ever consensus on conducting TDM of polymyxin B, and are intended to guide optimal clinical use.
Humans
;
Anti-Bacterial Agents/therapeutic use*
;
China
;
Drug Monitoring/methods*
;
Polymyxin B
;
Practice Guidelines as Topic
4.Investigation on the mechanism of Compound zaoren granules in improving insomnia based on serum meta-bonomics
Zekun WANG ; Shenlin LIU ; Xiaocong YU ; Danting LI ; Lingfeng ZHANG ; Yimeng ZHAO ; Chen CHEN ; Yajun CHEN ; Yachun SHU
China Pharmacy 2023;34(9):1093-1098
OBJECTIVE To study the mechanism of Compound zaoren granule in improving insomnia. METHODS Forty-nine mice were divided into blank group, model group, positive control group 1 (Estazolam tablets 0.5 mg/kg),control group 2 (Shumian capsule 0.6 g/kg), Compound zaoren granule low-dose, medium-dose and high-dose groups (2.5, 5, 10 g/kg), with 7 mice in each group. The insomnia model was established by chronic unpredictable mild stress combined with 4-chloro-DL- phenylacetic acid. The behavioral changes of mice were investigated through open field test and pentobarbital sodium synergistic hypnosis experiment, as well as the pathomorphology of mice hypothalamus tissue was observed by HE staining. The metabonomics analysis and multivariate statistical analysis of serum in mice were performed by UHPLC-Q-TOF-MS/MS, and the differential metabolites were screened out; the metabolic pathway analysis was conducted based on MetaboAnalyst 5.0 database. RESULTS Compared with blank group, the total travelling distance, the number of entering the central region and the moving distance in the central region of the model group were significantly reduced (P<0.05), the proportion of total rest time was significantly increased (P<0.05), the sleep duration of mice was significantly shortened (P<0.05), and hypothalamic nerve cells damaged and severely vacuolated. Compared with model group, the total travelling distance of Compound zaoren granule low-dose and medium-dose groups were increased significantly and the proportions of total rest time of those groups were decreased significantly (P<0.05), and the sleep duration of mice in Compound zaoren granule high-dose group was prolonged significantly (P<0.05); the hypothalamic nerve cells of mice in each administration group recovered to varying degrees, and the hypothalamus histiocytes of mice in the Compound zaoren granules high-dose group were closer to those in the blank group. A total of 18 differential metabolites (such as phenylalanine, taurine, norvaline, methionine) and 4 important amino acid metabolic pathways (L-phenylalanine, tyrosine and tryptophan biosynthesis; taurine and hypotaurine metabolism; L-phenylalanine metabolism; cysteine and methionine metabolism) were identified through metabolomics analysis. CONCLUSIONS Compound zaoren granules can normalize the disordered metabolism in vivo by regulating differential metabolites such as phenylalanine, taurine, and four amino acid metabolic pathways, so as to improve insomnia.
5.Analysis of the current status of cancer incidence and mortality in Shanghai,2017 and trends of 2002-2017
Kai GU ; Yi PANG ; Chunxiao WU ; Chunfang WANG ; Liang SHI ; Yongmei XIANG ; Yangming GONG ; Peng PENG ; Jianming DOU ; Mengyin WU ; Xiaocong ZHANG ; Ganling DING ; Jianying YAN ; Yan SHI ; Chen FU
Tumor 2023;43(4):241-256
Background and purpose:The Shanghai Municipal Center for Disease Control and Prevention provides annual updates on cancer occurrence and trends in Shanghai.This study aimed to investigate the cancer incidence and mortality in 201 7 and their trends from 2002 to 2017 in Shanghai. Methods:Data of new cancer diagnoses and deaths from 2002 to 2017 were obtained from the Shanghai Municipal Center for Disease Control and Prevention population-based cancer registry and Vital Statistics System.Cancer incidence and mortality stratified by year of diagnosis or death,gender and age group were analyzed.Number,proportion,crude rate,age-specific rate,age-standardized rate and others were calculated.The number,proportion and rates of common cancers in different groups were also calculated.Trends in age-standardized rate of incidence and death rates for all cancers combined and for the common cancer types by gender were estimated by joinpoint analysis and characterized by the annual percent change(APC)and average annual percent change(AAPC).Segi's 1960 world standard population was used for calculating age-standardized incidence and mortality. Results:The new cancer cases and deaths were 79 378 and 37 186 in Shanghai in 2017.The crude rate of incidence was 546.55/105,and the age-standardized rate was 246.31/105.The age-standardized rate of incidence was higher among females than among males.The crude rate of mortality was 256.04/1 05,and the age-standardized rate was 88.41/105.The age-standardized rate of mortality was higher among males than among females.The age-specific numbers and rates of incidence and mortality increased with age.The age-specific number and rate of incidence reached the peak at the age groups of 60-64 years and older than 85 years,and those of mortality among males reached the peak at the age groups of 60-64 years and older than 85 years,and those of mortality among females reached the peak at the age groups of older than 85 years,respectively.The sites of top 10 common cancer types sorted by the number of incidence cases among males were lung,colorectum,stomach,prostate,liver,thyroid,pancreas,bladder,kidney and oesophagus,and among females were lung,breast,thyroid,colorectum,stomach,pancreas,liver,brain,central nervous system(CNS),cervix uteri and gallbladder,the sites of those sorted by the number of deaths among males were lung,stomach,colorectum,liver,pancreas,prostate,oesophagus,bladder,lymphoma and gallbladder,among females were lung,colorectum,breast,stomach,pancreas,liver,gallbladder,brain,CNS,ovary and lymphoma.The top 10 common cancer types stratified by gender and the top 5 common cancer types stratified by common age groups merged of incidence and mortality had wide variations.Overall,the age-standardized rates of incidence were stable from 2002 to 2009,and increased 2.88%on average per year from 2009 to 201 7.The age-standardized rates of mortality were stable from 2002 to 2011,and decreased 2.66%on average per year from 2011 to 201 7.The trends differed by gender and cancer type. Conclusion:Lung cancer,colorectal cancer,pancreatic cancer,thyroid cancer,female breast cancer,cervical cancer and male prostate cancer are the most common cancers in Shanghai,the appropriate screening technical scheme should be formulated according to the current situation of malignant tumors in Shanghai,promote cancer opportunistic screening,promote appropriate technologies for intervention and management of cancer patients in the community,reduce the disease burden of malignant tumors.
6.Survival analysis of cancer cases diagnosed during 2002-2013 in Shanghai:a population-based study
Chunxiao WU ; Kai GU ; Yi PANG ; Chunfang WANG ; Liang SHI ; Yongmei XIANG ; Yangming GONG ; Peng PENG ; Jianming DOU ; Mengyin WU ; Xiaocong ZHANG ; Ganling DING ; Jiaying YAN ; Yan SHI ; Chen FU
Tumor 2023;43(4):257-265
Objective:To investigate the survival of cancer cases diagnosed during 2002-2013 in Shanghai. Methods:Data on new cancer cases with dead and follow-up information were obtained from the population-based cancer registry and vital statistics system of Shanghai Municipal Center for Disease Control and Prevention.Survival indicators stratified by year of diagnosis,gender,site and age were analyzed.Number of cases and proportion were calculated.The observed survival rates were calculated based on the life table.The probabilities of surviving from 0 to 99 years old were estimated according to the Elandt-Johnson model,and then the cumulative expected survival rates were calculated according to the Ederer Ⅱ method.Finally,the relative survival rates and average annual percent changes of their trends were calculated.The age-standardized relative survival rates adjusted by International Cancer Survival Standard weights were calculated. Results:Total 644 520 new cancer cases were diagnosed during 2002-2013 in Shanghai,accounting for 643 545(99.85%)cases included in the observed cohort for survival analysis.The 5-year observed survival rate increased from 37.61%to 46.47%.The 5-year relative survival rate increased from 42.1 8%to 51.11%.The 5-year age-standardized relative survival rate increased from 40.57%to 49.80%.Among the 5-year relative survival rates of cases diagnosed during 2011 to 2013,99.43%of thyroid cancer was the highest,followed by female breast cancer(88.35%)and corpus uteri cancer(85.56%);5.87%of pancreas cancer was the lowest,followed by gallbladder cancer(13.64%)and oesophagus cancer(17.72%).the rate of lung cancer with the largest number of cases was 23.59%,followed by colorectal cancer(59.82%)and stomach cancer(38.65%).The 5-year relative survival rate of total cases of all sites increased from 40.55%in 2002 to 52.77%in 2013,with an average annual percent change of 2.40%.13 cancer types showed increasing trends,such as liver cancer and lung cancer,while the trends of other cancer types were not statistically significant,such as pancreatic cancer and gallbladder cancer. Conclusion:The diagnostic levels and survival rates of cancer cases have been improved continuously in Shanghai.The trends of different cancer types were varied.
7.The incidence and mortality of lung cancer in 2016 and their trends from 2002 to 2016 in Shanghai
Jianming DOU ; Chunxiao WU ; Yi PANG ; Pingping BAO ; Chunfang WANG ; Yangming GONG ; Liang SHI ; Yongmei XIANG ; Mengyin WU ; Xiaocong ZHANG ; Yan SHI ; Chen FU ; Kai GU
Tumor 2023;43(4):266-276
Objective:To investigate the lung cancer incidence and mortality in 2016 and their trends from 2002 to 2016 in shanghai. Methods:The data of incidence and death on lung cancer in shanghai from 2002 to 2016 were obtained from the Shanghai Municipal Center for Disease Control and Prevention population-based cancer registry and Vital Statistics System.Lung Cancer incidence and mortality stratified by age of diagnosis or death,gender and age-group were analyzed.The number of cases and deaths,proportion,crude rates,age-specific rates,age-standardized rates,corresponding truncated age-standardized rates(35-64 years)and cumulative rates were calculated.Segi's 1960 world standard population was used for calculating age-standardized rates of incidence and mortality as well as truncated age-standardized rates.Trends in age-standardized rates of incidence and death for lung cancer in Shanghai from 2002-2016 were estimated by Joinpoint analysis and characterized by the annual percent change(APC). Results:The new lung cancer cases and deaths were 14 395 and 9 170 in Shanghai in 2016.The crude rate of incidence was 99.41/105,and the age-standardized rate of incidence was 39.76/105.New cases of lung cancer accounted for 19.34%of all malignant tumors in shanghai,ranking the first in the incidence spectrum of malignant tumors.The crude rate of mortality was 63.33/105,and the age-standardized rate was 21.57/105.Deaths of lung cancer accounted for 24.78%of all malignant tumor deaths in shanghai,ranking the first in the mortality spectrum of malignant tumors.The age-standardized rates of incidence and mortality for males were higher than those for females.The age-specific numbers and rates of incidence and mortality increased with age.The age-specific number and rate of incidence reached the peak at the age group of 60-64 years and 80-84 years respectively,and those of mortality peaked at the age group of 80-84 years and older than 85 years respectively.The incidence of lung cancer increased from 33.70/105 in 2002 to 39.76/1 05 in 2016 in Shanghai.Joinpoint analyses showed that the age-standardized rate of lung cancer incidence remained stable from 2002 to 2010(APC=-0.79,t=-1.46,P=0.175)but showed a significant upward trend with an average annual increase rate of 5.12%from 2010 to 2016(APC=5.12,t=6.97,P<0.001).The standardized mortality showed a downward trend with an average annual decrease rate of 0.87%from 2002 to 2016(APC=-0.87,t=-2.87,P=0.013). Conclusion:The incidence of lung cancer in Shanghai during 2002-2016 presented an upward trend while the mortality of lung cancer showed a gradual downward trend.There are differences in the incidence and mortality of lung cancer among different gender and age groups.
8.Analysis on the current status of liver cancer incidence and mortality in Shanghai,2016 and trends during 2002-2016
Liang SHI ; Kai GU ; Chunxiao WU ; Yi PANG ; Yangming GONG ; Yongmei XIANG ; Jianming DOU ; Xiaocong ZHANG ; Mengyin WU ; Chunfang WANG ; Yan SHI ; Chen FU
Tumor 2023;43(4):277-286
Objective:To investigate the liver cancer incidence and mortality in 2016 and their trends during 2002 through 2016 in Shanghai. Methods:Data on new liver cancer diagnoses and deaths during 2002 through 2016 were obtained from the Shanghai Municipal Center for Disease Control and Prevention population-based cancer registry and Vital Statistics System,the numbers,crude rates and age-standardized rates of incidence and mortality of liver cancer were calculated.Segi's 1960 world standard population was used to calculate age-standardized rates.Joinpoint analysis was used to analyze the trend changes and to estimate the annual percent change of incidence and mortality rates. Results:There were 3 842 new liver cancer cases in Shanghai in 201 6,69.44%of which were males,and 3 275 deaths of liver cancer,69.44%of which were males.Mortality to incidence ratio was 0.85.The crude rate of incidence was 26.53/105,and the age-standardized rate was 10.60/105.The crude rate of mortality was 22.62/105,and the age-standardized rate was 8.65/105.The Sex ratios for age-standardized incidence and mortality were 2.91∶1 and 2.97∶1,respectively.The age-specific numbers and rates of incidence and mortality increased with age.Overall,the age-standardized rate of incidence of liver cancer was decreased 3.69%on average per year during 2002 through 2016,and the age-standardized rate of mortality of liver cancer was decreased 3.82%on average per year. Conclusion:The incidence and mortality of liver cancer in Shanghai have been remarkably decreased to a low level countrywide,while liver cancer is still one of the leading malignancies and it brings serious threat to public health,comprehensive prevention and control efforts should be strengthened according to its epidemic characteristics and risk factors.
9.Incidence and mortality of esophageal cancer in Shanghai 2016 and changing trend analysis from 2002 to 2016
Xiaocong ZHANG ; Peng PENG ; Chunxiao WU ; Yi PANG ; Chunfang WANG ; Mengyin WU ; Yangming GONG ; Ganling DING ; Chen FU ; Yan SHI ; Kai GU
Tumor 2023;43(4):287-296
Objective:More than half of esophageal cancer incidences and deaths occurred in China.Based on the Shanghai Tumor Registration data,this study analyzed the incidence and mortality of esophageal cancer in Shanghai in 2016 and the changing trend from 2002 to 2016,in order to provide an epidemic basis for the prevention and treatment of esophageal cancer. Methods:Data on esophageal cancer in Shanghai from 2002 to 2016 were obtained through Shanghai Municipal Center for Disease Control and Prevention Population-based Cancer Registry and Vital Statistics System.The number of cases and deaths,crude rates,composition ratios,age-specific rates and cumulative rates were counted according to the year of diagnosis or death,gender and age groups.Segi's 1960 world standard population was used to calculate age-standardized rates of incidence and mortality,and corresponding truncated age-standardized rate(35-64 years old)on esophageal cancer.Z-test and Cochran test were used to compare the differences of age-specific rates and age-standardized rates among different subgroups,respectively.Temporal trend analyses were conducted by Joinpiont 4.9.1.0 software. Results:In 2016,the proportion of morphological verification of new cases of esophageal cancer in Shanghai was 73.1 8%,the proportion of death certificate only was 0.72%,and the ratio of death to incidence was 0.84.The number of new cases and deaths of esophageal cancer in Shanghai in 2016 were 1 398 and 1 171,accounting for 1.88%and 3.1 6%of all malignant tumors,respectively.The crude incidence and mortality of esophageal cancer were 9.65/100 000 and 8.09/100000,with age-standardized incidence and mortality of 3.36/100 000 and 2.67/100,000,respectively.The age-standardized incidence and mortality were significantly higher in males than in females.The age-specific incidence and mortality increased with age,and peaked at 50.54/100 000 and 53.35/1 00 000,respectively,among people aged 85 years and older.From 2002 to 2016,both the number of new cases and deaths of esophageal cancer in Shanghai showed a downward trend,and the age-standardized incidence and mortality also showed a downward trend,with an average annual deceleration of 4.45%[annual percent change(APC)=-4.45,P<0.001]and 4.1 7%(APC=-4.17,P<0.001),respectively. Conclusion:The incidence and mortality of esophageal cancer in Shanghai were at a low epidemic level across China,and showed a downward trend from 2002 to 2016.Esophageal cancer screening should focus on males and subjects aged 55 to 64 years.
10.Colorectal cancer incidence and mortality trends in urban Shanghai,China from 1973 to 2017:a Joinpoint regression and age-period-cohort analysis
Mengyin WU ; Kai GU ; Chunxiao WU ; Yi PANG ; Chunfang WANG ; Yangming GONG ; Peng PENG ; Jianming DOU ; Xiaocong ZHANG ; Yongmei XIANG ; Yan SHI ; Yingbin LIU ; Chen FU
Tumor 2023;43(4):325-336
Objective:To describe the epidemiological features and temporal trends of colorectal cancer in urban Shanghai from 1973 to 2017. Methods:Data on colorectal cancer in urban Shanghai was obtained through Shanghai Cancer Registry and Vital Statistics System.Joinpoint analysis was used to describe the temporal trends and annual percent change(APC)and age-period-cohort analysis was used to estimate the association between age,period and birth cohort and colorectal cancer. Results:A total of 105 847 cases and 60 447 deaths of colorectal cancer were diagnosed in urban Shanghai over the 45-year study period.Both the number of new cases and the number of deaths showed an increasing trend.In the same period,the age-standardized incidence of colorectal cancer in urban areas of Shanghai increased significantly from 14.1/100 000 in 1973 to 27.7/100 000 in 2017,while the age-standardized mortality rate increased from 8.2/100 000 to 10.7/100 000.The overall average annual age-standardized incidence and mortality rates were 20.4/100 000 and 11.0/100 000,respectively.With the increase of age,the age-standardized morbidity and mortality of colorectal cancer showed an obvious upward trend.Taking 1993-1997 as reference,the risk of colorectal cancer in Shanghai reached the highest in 2013-2017,and the corresponding relative risk was 1.2(95%confidence interval:1.2-1.3),while the lowest was 0.9(95%confidence interval:0.8-1.0)during 1973-1977.Mortality risk,on the contrary,decreased with the increase of time.Before 1953-1957,the risk of colorectal cancer in urban Shanghai increased with the increase of birth cohort time,and then showed a downward trend.There was a corresponding decline in the risk of colorectal cancer death among people born after 1957. Conclusion:The incidence and mortality of colorectal cancer in Shanghai showed an increasing trend from 1973 to 2017,but the prevalence trend of colorectal cancer is still different among different populations.

Result Analysis
Print
Save
E-mail