1.Application of virtual reality technology in managing negative emotions and postoperative rehabilitation in perioperative patients from 2015 to 2025: a bibliometric analysis
Lijun DONG ; Shihao XU ; Qiuhua CHEN ; Lu ZHANG ; Xiaobing YIN
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):69-82
ObjectiveTo analyze the research status, hotspots and development trends in the application of virtual reality (VR) technology in managing negative emotions and postoperative rehabilitation of perioperative patients over the past decade. MethodsLiteratures related to the application of VR technology in managing negative emotions and postoperative rehabilitation of perioperative patients were retrieved from Web of Science Core Collection database and CNKI, covering the period from January, 2015 to August, 2025, and CiteSpace 6.3.R1 was used for bibliometric analysis. ResultsA total of 267 English literatures and 130 Chinese literatures were included, with the annual number of publications showing an upward trend. The United States was the country with the largest number of publications in English literatures, and Erasmus University Rotterdam was the institution with the largest number of publications. High-frequency keywords included virtual reality, pain, surgery, anxiety and distraction. Research hotspots mainly focused on functional exercise, negative emotions, pain management and multimodal intervention strategies. English researches were deepening towards virtual reality exposure therapy, mechanism exploration and personalized schemes, while Chinese researches focused more on the verification of rehabilitation effects. ConclusionResearches on the application of VR technology in the management of perioperative patients are rapidly developing, with research hotspots shifting from single technology application to multimodal and personalized integrated intervention. Future research should focus on exploring its intervention mechanisms, personalized schemes and the breadth of cross-departmental applications.
2.Application of bicuspid pulmonary valve sewn by 0.1 mm expanded polytetrafluoroethylene in right ventricle outflow tract reconstruction
Jianrui MA ; Tong TAN ; Miao TIAN ; Jiazichao TU ; Wen XIE ; Hailong QIU ; Shuai ZHANG ; Jian ZHUANG ; Jimei CHEN ; Jianzheng CEN ; Shusheng WEN ; Haiyun YUAN ; Xiaobing LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1127-1132
Objective To introduce a modified technique of right ventricular outflow tract (RVOT) reconstruction using a handmade bicuspid pulmonary valve crafted from expanded polytetrafluoroethylene (ePTFE) and to summarize the early single-center experience. Methods Patients with complex congenital heart diseases (CHD) who underwent RVOT reconstruction with a handmade ePTFE bicuspid pulmonary valve due to pulmonary regurgitation at Guangdong Provincial People’s Hospital from April 2021 to February 2022 were selected. Postoperative artificial valve function and right heart function indicators were evaluated. Results A total of 17 patients were included, comprising 10 males and 7 females, with a mean age of (18.18±12.14) years and a mean body weight of (40.94±19.45) kg. Sixteen patients underwent reconstruction with a handmade valved conduit, with conduit sizes ranging from 18 to 24 mm. No patients required mechanical circulatory support, and no in-hospital deaths occurred. During a mean follow-up period of 12.89 months, only one patient developed valve dysfunction, and no related complications or adverse events were observed. The degree of pulmonary regurgitation was significantly improved post-RVOT reconstruction and during follow-up compared to preoperative levels (P<0.001). Postoperative right atrial diameter, right ventricular diameter, and tricuspid regurgitation area were all significantly reduced compared to preoperative values (P<0.05). Conclusion The use of a 0.1 mm ePTFE handmade bicuspid pulmonary valve for RVOT reconstruction in complex CHD is a feasible, effective, and safe technique.
4.Dimeric natural product panepocyclinol A inhibits STAT3 via di-covalent modification.
Li LI ; Yuezhou WANG ; Yiqiu WANG ; Xiaoyang LI ; Qihong DENG ; Fei GAO ; Wenhua LIAN ; Yunzhan LI ; Fu GUI ; Yanling WEI ; Su-Jie ZHU ; Cai-Hong YUN ; Lei ZHANG ; Zhiyu HU ; Qingyan XU ; Xiaobing WU ; Lanfen CHEN ; Dawang ZHOU ; Jianming ZHANG ; Fei XIA ; Xianming DENG
Acta Pharmaceutica Sinica B 2025;15(1):409-423
Homo- or heterodimeric compounds that affect dimeric protein function through interaction between monomeric moieties and protein subunits can serve as valuable sources of potent and selective drug candidates. Here, we screened an in-house dimeric natural product collection, and panepocyclinol A (PecA) emerged as a selective and potent STAT3 inhibitor with profound anti-tumor efficacy. Through cross-linking C712/C718 residues in separate STAT3 monomers with two distinct Michael receptors, PecA inhibits STAT3 DNA binding affinity and transcription activity. Molecular dynamics simulation reveals the key conformation changes of STAT3 dimers upon the di-covalent binding with PecA that abolishes its DNA interactions. Furthermore, PecA exhibits high efficacy against anaplastic large T cell lymphoma in vitro and in vivo, especially those with constitutively activated STAT3 or STAT3Y640F. In summary, our study describes a distinct and effective di-covalent modification for the dimeric compound PecA to disrupt STAT3 function.
5.Expert consensus on imaging diagnosis and analysis of early correction of childhood malocclusion.
Zitong LIN ; Chenchen ZHOU ; Ziyang HU ; Zuyan ZHANG ; Yong CHENG ; Bing FANG ; Hong HE ; Hu WANG ; Gang LI ; Jun GUO ; Weihua GUO ; Xiaobing LI ; Guangning ZHENG ; Zhimin LI ; Donglin ZENG ; Yan LIU ; Yuehua LIU ; Min HU ; Lunguo XIA ; Jihong ZHAO ; Yaling SONG ; Huang LI ; Jun JI ; Jinlin SONG ; Lili CHEN ; Tiemei WANG
International Journal of Oral Science 2025;17(1):21-21
Early correction of childhood malocclusion is timely managing morphological, structural, and functional abnormalities at different dentomaxillofacial developmental stages. The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion. This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence, aiming to provide general guidance on appropriate imaging examination selection, comprehensive and accurate imaging assessment for early orthodontic treatment patients.
Humans
;
Malocclusion/diagnostic imaging*
;
Child
;
Consensus
6.Expert consensus on the prevention and treatment of radiochemotherapy-induced oral mucositis.
Juan XIA ; Xiaoan TAO ; Qinchao HU ; Wei LUO ; Xiuzhen TONG ; Gang ZHOU ; Hongmei ZHOU ; Hong HUA ; Guoyao TANG ; Tong WU ; Qianming CHEN ; Yuan FAN ; Xiaobing GUAN ; Hongwei LIU ; Chaosu HU ; Yongmei ZHOU ; Xuemin SHEN ; Lan WU ; Xin ZENG ; Qing LIU ; Renchuan TAO ; Yuan HE ; Yang CAI ; Wenmei WANG ; Ying ZHANG ; Yingfang WU ; Minhai NIE ; Xin JIN ; Xiufeng WEI ; Yongzhan NIE ; Changqing YUAN ; Bin CHENG
International Journal of Oral Science 2025;17(1):54-54
Radiochemotherapy-induced oral mucositis (OM) is a common oral complication in patients with tumors following head and neck radiotherapy or chemotherapy. Erosion and ulcers are the main features of OM that seriously affect the quality of life of patients and even the progress of tumor treatment. To date, differences in clinical prevention and treatment plans for OM have been noted among doctors of various specialties, which has increased the uncertainty of treatment effects. On the basis of current research evidence, this expert consensus outlines risk factors, clinical manifestations, clinical grading, ancillary examinations, diagnostic basis, prevention and treatment strategies and efficacy indicators for OM. In addition to strategies such as basic oral care, anti-inflammatory and analgesic agents, anti-infective agents, pro-healing agents, and photobiotherapy recommended in previous guidelines, we also emphasize the role of traditional Chinese medicine in OM prevention and treatment. This expert consensus aims to provide references and guidance for dental physicians and oncologists in formulating strategies for OM prevention, diagnosis, and treatment, standardizing clinical practice, reducing OM occurrence, promoting healing, and improving the quality of life of patients.
Humans
;
Chemoradiotherapy/adverse effects*
;
Consensus
;
Risk Factors
;
Stomatitis/etiology*
7.Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione.
Fu'an XIE ; Yujia NIU ; Xiaobing CHEN ; Xu KONG ; Guangting YAN ; Aobo ZHUANG ; Xi LI ; Lanlan LIAN ; Dongmei QIN ; Quan ZHANG ; Ruyi ZHANG ; Kunrong YANG ; Xiaogang XIA ; Kun CHEN ; Mengmeng XIAO ; Chunkang YANG ; Ting WU ; Ye SHEN ; Chundong YU ; Chenghua LUO ; Shu-Hai LIN ; Wengang LI
Journal of Pharmaceutical Analysis 2025;15(1):101068-101068
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
8.Effects of the water extract of Morinda officinalis on the expressions of sex hormones and receptors in bisphenol A-contaminated mice
Li ZHANG ; Xiaobing XIN ; Huanhuan HU ; Xiaolin LI ; Hongxiao DONG ; Xiangju JIANG
China Pharmacy 2024;35(16):1979-1984
OBJECTIVE To explore the effects of the water extract of Morinda officinalis on the expressions of sex hormones and receptors in bisphenol A (BPA)-contaminated mice. METHODS Totally 60 male Kunming mice were randomly divided into control group, model group, and low-dose, medium-dose and high-dose groups of M. officinalis water extract (20, 40, 60 mg/kg), with 12 mice in each group. The model group and M. officinalis water extract groups were given BPA intragastrically [50 mg/(kg·d), once a day, for 4 consecutive weeks] to establish the BPA-contamination model of mice. After modeling, each drug group was gavaged with the corresponding drug solution, once a day, for 4 consecutive weeks. After the last medication, the body weight and testicular weight of the mice in each group were weighed, the histopathological changes in the testis were observed, and the serum sex hormones [luteinizing hormone (LH), follicle-stimulating hormone (FSH)] contents and the mRNA and protein expressions of LH receptor (LHR) and FSH receptor (FSHR) in the testicular tissues were detected. RESULTS Compared with the control group, the testicular tissues of mice in the model group had structural degeneration, loose connections between spermatogenic cells and Sertoli cells, obvious lacunae and reduced number of spermatogenic cells; the mRNA and protein expressions of LHR and FSHR in testicular tissues were significantly down-regulated (P<0.01), but there were no significant changes in their body weights, testicular weights, and serum contents of LH and FSH (P>0.05). Compared with the model group, the histopathological changes of testicular tissues of mice in each dose group of M. officinalis water extract were improved to different degrees, and the mRNA and protein expressions of LHR and FSHR in testicular tissues were up-regulated to different degrees (P<0.05 or P< 0.01), and some indicator levels were similar to those of the control group (P>0.05). However, there were no significant changes in their body weights, testicular weights, and serum contents of LH and FSH (P>0.05). CONCLUSIONS The water extract of M. officinalis has a certain improvement effect on testicular injury in BPA-contaminated mice, which might be related to its increase in the mRNA and protein expressions of LHR and FSHR.
9.Not Available.
Chunhao ZHU ; Xiaobing LAN ; Zhiqiang WEI ; Jianqiang YU ; Jian ZHANG
Acta Pharmaceutica Sinica B 2024;14(1):67-86
Neuropathic pain is a debilitating pathological condition that presents significant therapeutic challenges in clinical practice. Unfortunately, current pharmacological treatments for neuropathic pain lack clinical efficacy and often lead to harmful adverse reactions. As G protein-coupled receptors (GPCRs) are widely distributed throughout the body, including the pain transmission pathway and descending inhibition pathway, the development of novel neuropathic pain treatments based on GPCRs allosteric modulation theory is gaining momentum. Extensive research has shown that allosteric modulators targeting GPCRs on the pain pathway can effectively alleviate symptoms of neuropathic pain while reducing or eliminating adverse effects. This review aims to provide a comprehensive summary of the progress made in GPCRs allosteric modulators in the treatment of neuropathic pain, and discuss the potential benefits and adverse factors of this treatment. We will also concentrate on the development of biased agonists of GPCRs, and based on important examples of biased agonist development in recent years, we will describe universal strategies for designing structure-based biased agonists. It is foreseeable that, with the continuous improvement of GPCRs allosteric modulation and biased agonist theory, effective GPCRs allosteric drugs will eventually be available for the treatment of neuropathic pain with acceptable safety.
10.Two types of coumarins-specific enzymes complete the last missing steps in pyran- and furanocoumarins biosynthesis.
Yucheng ZHAO ; Yuedong HE ; Liangliang HAN ; Libo ZHANG ; Yuanzheng XIA ; Fucheng YIN ; Xiaobing WANG ; Deqing ZHAO ; Sheng XU ; Fei QIAO ; Yibei XIAO ; Lingyi KONG
Acta Pharmaceutica Sinica B 2024;14(2):869-880
Pyran- and furanocoumarins are key representatives of tetrahydropyrans and tetrahydrofurans, respectively, exhibiting diverse physiological and medical bioactivities. However, the biosynthetic mechanisms for their core structures remain poorly understood. Here we combined multiomics analyses of biosynthetic enzymes in Peucedanum praeruptorum and in vitro functional verification and identified two types of key enzymes critical for pyran and furan ring biosynthesis in plants. These included three distinct P. praeruptorum prenyltransferases (PpPT1-3) responsible for the prenylation of the simple coumarin skeleton 7 into linear or angular precursors, and two novel CYP450 cyclases (PpDC and PpOC) crucial for the cyclization of the linear/angular precursors into either tetrahydropyran or tetrahydrofuran scaffolds. Biochemical analyses of cyclases indicated that acid/base-assisted epoxide ring opening contributed to the enzyme-catalyzed tetrahydropyran and tetrahydrofuran ring refactoring. The possible acid/base-assisted catalytic mechanisms of the identified cyclases were theoretically investigated and assessed using site-specific mutagenesis. We identified two possible acidic amino acids Glu303 in PpDC and Asp301 in PpOC as vital in the catalytic process. This study provides new enzymatic tools in the epoxide formation/epoxide-opening mediated cascade reaction and exemplifies how plants become chemically diverse in terms of enzyme function and catalytic process.

Result Analysis
Print
Save
E-mail