1.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
4.Preliminary study on delaying aging induced thymus degeneration in SAMP6 mice with Bazi Bushen capsule
Zhao-Dong LI ; Yin-Xiao CHEN ; Bo-Yang GONG ; Zhe XU ; Zhi-Xian YU ; Yue-Xuan SHI ; Yan-Fei PENG ; Yu-Hong BIAN ; Yun-Long HOU ; Xiang-Ling WANG ; Shu-Wu ZHAO
Chinese Pharmacological Bulletin 2024;40(6):1186-1192
Aim To explore the improvement effect of Bazi Bushen capsule on thymic degeneration in SAMP6 mice and the possible mechanism.Methods Twenty 12 week old male SAMP6 mice were randomly divided into the model group(SAMP6)and the Bazi Busheng capsule treatment group(SAMP6+BZBS).Ten SAMR1 mice were assigned to a homologous control group(SAMR1).The SAMP6+BZBS group was oral-ly administered Bazi Bushen capsule suspension(2.8 g·kg-1)daily,while the other two groups were orally administered an equal amount of distilled water.After nine weeks of administration,the morphology of the thymus in each group was observed and the thymus in-dex was calculated;HE staining was used to observe the structural changes of thymus tissue;SA-β-gal stai-ning was used to detect thymic aging;flow cytometry was used to detect the proportion of thymic CD3+T cells in each group;Western blot was used to detect the levels of p16,Bax,Bcl-2,and cleaved caspase-3 proteins in thymus;immunofluorescence was applied to detect the proportion of cortical thymic epithelial cells in each group;ELISA was employed to detect IL-7 lev-els in thymus.Results Compared with the SAMP6 group,the thymic index of the SAMP6+BZBS group significantly increased(P<0.05);the disordered thy-mic structure was significantly improved;the positive proportion of SA-β-gal staining significantly decreased(P<0.01);the proportion of CD3+T cells apparently increased(P<0.05);the level of p16 protein signifi-cantly decreased(P<0.05);the level of Bcl-2 pro-tein significantly increased(P<0.05),while the lev-el of cleaved caspase-3 protein markedly decreased(P<0.05);the proportion of cortical thymic epithelial cells evidently increased;the level of IL-7 significantly increased(P<0.01).Conclusions Bazi Bushen capsule can delay thymic degeneration,inhibit cell ap-optosis in thymus and promote thymic cell development in SAMP6 mice,which may be related to increasing the proportion of cortical thymic epithelial cells and promoting IL-7 secretion.
5.Effect of Bushen Tongfu decoction on neuroinflammation in AD mice based on intestinal flora and metabolomics
Jie ZHANG ; Xu WANG ; Xiao-Yu SONG ; Si-Min LI ; Jian-Ping DUAN ; Yun-Min XU ; Min ZHAO
Chinese Pharmacological Bulletin 2024;40(7):1258-1266
Aim To explore the mechanism of Bushen Tongfu decoction(BSTF)improving the learning and memory ability of APP/PS1 mice.Methods The APP/PS1 mice were administered by BSTF for eight weeks.The spatial learning and memory ability of all mice were detected by Morris water maze.The changes in the intestinal microbiota and gut metabolites of mice were detected by 16S rDNA and LC-MS/MS technolo-gy.Results Compared with the model group,the es-cape latency and swimming path in BSTF-H,BSTF-M and BSTF-L groups were shortened and the times of target crossings after removing the platform increased significantly(P<0.01).The 16S rDNA results showed that BSTF could increase the abundance of beneficial bacteria of Firmicutes and reduce the abun-dance of harmful bacteria of Bacteroidota in APP/PS1 mice.A total of 25 differential metabolites were identi-fied by LC-MS/MS,including sphingolipid metabo-lism,lysine metabolism and tyrosine metabolism.KEGG enrichment analysis showed that the therapeutic effect of BSTF was mainly through inflammation-related signaling pathways such as NF-κB pathways and Apelin pathways.Conclusions The mechanism of BSTF im-proving the learning and memory ability of APP/PS1 mice may be related to the improvement of intestinal flora composition,the effect of sphingolipid metabo-lism,lysine metabolism and tyrosine metabolism and the regulation of inflammation-related signaling path-ways such as NF-κB and Apelin pathways.
6.Exploration of mechanism of polydatin in learning and cognitive impairment in aging mice based on Keap1/Nrf2/HO-1 pathway
Xiao-Xuan MA ; Yi LIU ; Yu CAI ; Chun-Chao YAN ; Yun-Zhong CHEN
Chinese Pharmacological Bulletin 2024;40(7):1287-1295
Aim To study the regulatory effect of poly-datin on D-galactose-induced aging model mice.Methods Fifty-six ICR mice(half male and half fe-male)were divided into normal group,model group,positive group,low,medium and high polydatin treat-ment groups.Aging model was established by subcuta-neous injection of D-galactose(500 mg·kg-1)into the back of neck every day.During the modeling peri-od,the positive group was given donepezil hydrochlo-ride tablets(0.75 mg·kg-1)by gavage,the treat-ment group was given polydatin(40,70,100 mg·kg1)by gavage,and the normal group was given the same amount of normal saline.The learning and cogni-tive ability of mice was evaluated by nesting experi-ment,new object recognition experiment and Morris water maze experiment.The heart,liver,spleen,kid-ney and thymus of mice were taken to calculate the or-gan index.The pathological changes of whole brain tis-sue in mice were observed by hematoxylin-eosin(HE)staining.The levels of T-SOD,MDA,GSH-Px and AchE in serum and whole brain tissue of mice were de-tected by ELISA.The protein expression levels of Keap1,Nrf2 and HO-1 in hippocampus of mice were detected by Western blot.Results Compared with the model group,the nesting ability,the ability to recog-nize new objects and the ability to find platforms under-water of the mice in the positive group and the low,medium and high dose groups of polydatin were im-proved.The organ index increased.The neuronal dam-age in the cerebral cortex and hippocampus was signifi-cantly ameliorated.The activities of T-SOD and GSH-Px in serum and brain tissue increased and the activi-ties of MDA and AchE decreased.The expression lev-els of Nrf2 and HO-1 protein in hippocampus in-creased,and the expression level of Keap1 protein de-creased.Conclusions Polydatin can ameliorate the learning and cognitive impairment in D-galactose-in-duced aging model mice,and its mechanism may be related to the Keap1/Nrf2/HO-1 pathway.
7.Effect of Guben Yanling pills in antagonising liver aging in mice through NF-κB signaling pathway and its mechanism
Yi HUA ; Yu-Chun ZHOU ; Rong-Chun SUI ; Xian-Qing DENG ; Song-Yang LIN ; Guang-Bin LE ; Yun XIAO ; Ming-Xia SONG
Chinese Pharmacological Bulletin 2024;40(7):1367-1374
Aim To study the effect of Guben Yanling pills on liver aging in aging mice and the related mech-anism.Methods The mice were randomly divided in-to blank control group,model group,vitamin E group(0.1 g·kg-1)and low,medium and high dose groups(0.59,1.17,2.34 g·kg-1)of Guben Yan-ling pills.The aging mouse model was established by subcutaneous injection of D-galactose(150 mg·kg-1)into the back of neck.At the same time of mod-eling,the corresponding drugs were given by gavage once a day for six weeks.The main organ indexes were calculated.HE staining was used to observe the mor-phology of liver tissue.Colorimetry was used to detect the activity of β-galactosidase in liver.ELISA was used to detect the content of TNF-α,IL-1 β,IL-6,IL-4,IL-10.Western blot was used to detect the protein relative expression level of IKKβ,Iκ Bα,NF-κB p65.Immunofluorescence was used to detect the expression level of NF-κB p65.Results Compared with the blank control group,the organ index of the brain,liv-er,kidney,spleen,and thymus in the model group decreased(P<0.05,P<0.01),the activity of β-galactosidase increased(P<0.01),liver tissue mor-phology and structure were significantly damaged,the content of TNF-α,IL-1 β and IL-6 increased(P<0.01),the content of IL-4 and IL-10 decreased(P<0.01),the levels of IKKβ,NF-κB p65 in-creased(P<0.01),the levels of IKBα decreased(P<0.01),and the levels of NF-κB p65 in nucleus increased(P<0.01).Compared with the model group,the organ indexes of brain,liver,kidney,spleen,and thymus in each dose group of Guben Yan-ling pills increased(P<0.05,P<0.01),the activity of β-galactosidase decreased(P<0.01),the morpho-logical and structural damage of liver tissue was signifi-cantly improved,the content of TNF-α,IL-1 β and IL-6 decreased(P<0.01),the content of IL-4 and IL-10 increased(P<0.01),the levels of IKKβ,NF-κB p65 decreased(P<0.01),the levels of IκBα in-creased(P<0.01),and the levels of NF-κB p65 in nucleus decreased(P<0.01).Conclusions Guben Yanling pills can antagonize liver aging in mice,and its mechanism may be related to inhibiting the activa-tion of NF-κB signaling pathway in liver,downregulat-ing downstream pro-inflammatory factor levels,upregu-lating anti-inflammatory factor levels,and alleviating inflammation in liver.
8.Research advances on pathogenesis and treatment of diabetic complications
Yun-Qi ZHANG ; Xiao-Yu XU ; Guo-Wei MA ; Xiao-Bo SUN ; Yun LUO
Chinese Pharmacological Bulletin 2024;40(10):1808-1813
In recent decades,the prevalence of diabetes has been increasing year by year,and a series of complications caused by diabetes include diabetic cardiomyopathy,retinopathy,nephropa-thy,osteoporosis and neuropathy.The pathogenesis of these com-plications is still very unclear,and there is an urgent need for some therapeutic drugs to meet the clinical needs.In this re-view,we summarize the pathogenesis of various diabetic compli-cations in the past five years,the markers that have received more attention and the main therapeutic drugs,in order to pro-vide references for the drug research and development of diabetic complications.
9.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
10.A novel nomogram-based model to predict the postoperative overall survival in patients with gastric and colorectal cancer
Siwen WANG ; Kangjing XU ; Xuejin GAO ; Tingting GAO ; Guangming SUN ; Yaqin XIAO ; Haoyang WANG ; Chenghao ZENG ; Deshuai SONG ; Yupeng ZHANG ; Lingli HUANG ; Bo LIAN ; Jianjiao CHEN ; Dong GUO ; Zhenyi JIA ; Yong WANG ; Fangyou GONG ; Junde ZHOU ; Zhigang XUE ; Zhida CHEN ; Gang LI ; Mengbin LI ; Wei ZHAO ; Yanbing ZHOU ; Huanlong QIN ; Xiaoting WU ; Kunhua WANG ; Qiang CHI ; Jianchun YU ; Yun TANG ; Guoli LI ; Li ZHANG ; Xinying WANG
Chinese Journal of Clinical Nutrition 2024;32(3):138-149
Objective:We aimed to develop a novel visualized model based on nomogram to predict postoperative overall survival.Methods:This was a multicenter, retrospective, observational cohort study, including participants with histologically confirmed gastric and colorectal cancer who underwent radical surgery from 11 medical centers in China from August 1, 2015 to June 30, 2018. Baseline characteristics, histopathological data and nutritional status, as assessed using Nutrition Risk Screening 2002 (NRS 2002) score and the scored Patient-Generated Subjective Global Assessment, were collected. The least absolute shrinkage and selection operator regression and Cox regression were used to identify variables to be included in the predictive model. Internal and external validations were performed.Results:There were 681 and 127 patients in the training and validation cohorts, respectively. A total of 188 deaths were observed over a median follow-up period of 59 (range: 58 to 60) months. Two independent predictors of NRS 2002 and Tumor-Node-Metastasis (TNM) stage were identified and incorporated into the prediction nomogram model together with the factor of age. The model's concordance index for 1-, 3- and 5-year overall survival was 0.696, 0.724, and 0.738 in the training cohort and 0.801, 0.812, and 0.793 in the validation cohort, respectively.Conclusions:In this study, a new nomogram prediction model based on NRS 2002 score was developed and validated for predicting the overall postoperative survival of patients with gastric colorectal cancer. This model has good differentiation, calibration and clinical practicability in predicting the long-term survival rate of patients with gastrointestinal cancer after radical surgery.

Result Analysis
Print
Save
E-mail