1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.Predicting model for the impact of Internet usage characteristics on suicidal ideation among vocational high school students
YU Bin, YAN Jingyan, ZHANG Liqun, XIAO Chenchang, LI Fang, GUO Yan, YAN Hong
Chinese Journal of School Health 2025;46(8):1175-1179
Objective:
To explore the association between the Internet usage characteristics and suicidal ideation among vocational high school students, so as to provide a theoretical basis for precise intervention of suicide among vocational high school students.
Methods:
A total of 1 781 students were recruited from three vocational high schools in Wuhan and Xianning in March 2023 by using the cluster random sampling method. The Columbia-Suicide Severity Rating Scale and Revised Chen Internet Addiction Scale were used to measure suicidal ideation and Internet addiction, respectively. LASSO regression model was used to select influential factors related to suicidal ideation, and the gradient boosting decision tree algorithm XGBoost was used to develop prediction models and evaluate predictive performance. By calculating the SHAP values, the contribution of each influential factor was quantified.
Results:
The prevalence of suicidal ideation among vocational high school students was 42.22% and prevalence of Internet addiction was 26.39%. LASSO regression results indicated that age, gender, experience of being left behind, parental relationship, holding a class cadre position, using the Internet for learning, Internet use during dawn, morning and late night, Internet addiction, and depressive symptoms were all the influential factors of suicidal ideation among vocational high school students ( β= -0.05 , 0.29, 0.09, 0.27, 0.10, -0.01, 0.09, 0.05, 0.24, 0.28, 0.78, all P <0.05). The AUC of the prediction model was 0.75. The results based on SHAP values indicated that all influential factors identified through multivariate analysis contributed positively to the model predictions ( SHAP >0). Among these, depressive symptoms and parental relationship had the greatest impact on suicidal ideation ( SHAP =0.77, 0.26), and the joint effect of features with higher contribution could improve the prediction probability.
Conclusions
Depressive symptoms, parental relationships, Internet addiction, and time of Internet use are most important risk factors of suicidal behaviors for vocational high school students. Thus, effective interventions should be conducted to reduce their suicidal ideation.
5.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
6.The historical evolution of Chinese physiology textbooks.
Yan FENG ; Xiao ZHAI ; Xin WANG ; Feng YANG ; Liang ZHU ; Guo-Chao SUN ; Ning WANG ; Jun ZHANG ; Jing XIAO ; Wei-Wei LIU ; You-Fei GUAN
Acta Physiologica Sinica 2025;77(1):1-12
This article systematically reviews the characteristics and trends of the writing, editing, publication and promotion of physiology textbooks in China from the late 19th century to the present, focusing on the introduction, development and innovation of Chinese physiology textbooks. The development of physiology textbooks in China is divided into four main stages: the introduction and initial development of physiology textbooks from the late 19th century to 1925; the localization and diversification of textbooks from 1926 to 1949, after the establishment of the Chinese Physiological Society; the exploratory phase of textbook construction after the founding of the People's Republic of China from 1949 to 1976; the formation and innovation of the textbook development process from 1977 to the present, following the restoration of the college entrance examination. For each phase, the article not only records the historical development of physiology textbooks, but also analyzes the evolution of their content, writing styles and the interaction with the social and political contexts. The article summarizes the characteristics and experiences of all these four phases. Special attention is given to the comprehensive statistical analysis of physiology textbooks published since the restoration of the college entrance examination and Economic Reform and Opening-up in 1977, revealing the changes in the number, publication trends and academic features of textbooks during this period. Finally, the article presets the future development of physiology textbooks in China, proposing that textbook writing should integrate aspects such as ideological and political education, medical humanities, basic and clinical medicine, health education, scientific research and international exchange and collaboration. The article also advocates for the application of new technologies and methods, such as artificial intelligence, virtual teaching models and knowledge graphs, to support "personalized learning". This research provides a systematic reference for the study of the history of medical education and offers theoretical support for the future innovation of physiology textbook in China.
Humans
;
China
;
History, 19th Century
;
History, 20th Century
;
History, 21st Century
;
Physiology/education*
;
Textbooks as Topic/history*
7.Exploration of pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in treatment of gouty arthritis based on UPLC-Q-Exactive Orbitrap-MS technology and network pharmacology.
Yan XIAO ; Ting ZHANG ; Ying-Jie ZHANG ; Bin HUANG ; Peng CHEN ; Xiao-Hua CHEN ; Ming-Qing HUANG ; Xue-Ting CHEN ; You-Xin SU ; Jie-Mei GUO
China Journal of Chinese Materia Medica 2025;50(2):444-488
Based on ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology and network pharmacology, this study explored the pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in the treatment of gouty arthritis(GA). UPLC-Q-Exactive Orbitrap-MS technology was used to identify the components in Huazhuo Sanjie Chubi Decoction, and the qualitative analysis of its active ingredients was carried out, with a total of 184 active ingredients identified. A total of 897 active ingredient targets were screened through the PharmMapper database, and 491 GA-related disease targets were obtained from the OMIM, GeneCards, CTD databases. After Venn analysis, 60 intersecting targets were obtained. The component target-GA target network was constructed through the Cytoscape platform, and the STRING database was used to construct a protein-protein interaction network, with 16 core targets screened. The core targets were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses, and the component-target-pathway network was constructed. It was found that the main active ingredients of the formula for the treatment of GA were phenols, flavonoids, alkaloids, and terpenoids, and the key targets were SRC, MMP3, MMP9, REN, ALB, IGF1R, PPARG, MAPK1, HPRT1, and CASP1. Through GO analysis, it was found that the treatment of GA mainly involved biological processes such as lipid response, bacterial response, and biostimulus response. KEGG analysis showed that the pathways related to the treatment of GA included lipids and atherosclerosis, neutrophil extracellular traps(NETs), IL-17, and so on. In summary, phenols, flavonoids, alkaloids, and terpenoids may be the core pharmacodynamic substances of Huazhuo Sanjie Chubi Decoction in the treatment of GA, and the pharmacodynamic mechanism may be related to SRC, MMP3, MMP9, and other targets, as well as lipids and atherosclerosis, NETs, IL-17, and other pathways.
Drugs, Chinese Herbal/therapeutic use*
;
Network Pharmacology
;
Arthritis, Gouty/metabolism*
;
Chromatography, High Pressure Liquid/methods*
;
Humans
;
Mass Spectrometry/methods*
;
Protein Interaction Maps/drug effects*
8.Pharmacokinetics and anti-inflammatory activity of cannabidiol/ γ-polyglutamic acid-g-cholesterol nanomicelles.
Rui LI ; Li-Yan LU ; Chu XU ; Rui HAO ; Xiao YU ; Rui GUO ; Jue CHEN ; Wen-Hui RUAN ; Ying-Li WANG
China Journal of Chinese Materia Medica 2025;50(2):534-541
In this study, the pharmacokinetic characteristics and tissue distribution of cannabidiol(CBD)/γ-polyglutamic acid-g-cholesterol(γ-PGA-g-CHOL) nanomicelles [CBD/(γ-PGA-g-CHOL)NMs] were investigated by pharmacokinetic experiments, and the effect of CBD/(γ-PGA-g-CHOL)NMs on the lipopolysaccharide(LPS)-induced inflammatory damage of cells was evaluated by cell experiments. CBD/(γ-PGA-g-CHOL)NMs were prepared by dialysis. The CBD concentrations in the plasma samples of male SD rats treated with CBD and CBD/(γ-PGA-g-CHOL)NMs were investigated, and the pharmacokinetic parameters were calculated and compared. UPLC-MS/MS was employed to determine the concentration of CBD in tissue samples. The heart, liver, spleen, lung, kidney, and muscle samples were collected at different time points to explore the tissue distribution of CBD and CBD/(γ-PGA-g-CHOL)NMs. The Caco-2 cell model of LPS-induced inflammation was established, and the cell viability, transepithelial electrical resistance(TEER), and secretion levels of inflammatory cytokines were determined to compare the anti-inflammatory activity between the two groups. The results showed that CBD/(γ-PGA-g-CHOL)NMs had the average particle size of(163.1±2.3)nm, drug loading of 8.78%±0.28%, and encapsulation rate of 84.46%±0.35%. Compared with CBD, CBD/(γ-PGA-g-CHOL)NMs showed increased peak concentration(C_(max)) and prolonged peak time(t_(max)) and mean residence time(MRT_(0-t)). Within 24 h, the tissue distribution concentration of CBD/(γ-PGA-g-CHOL)NMs was higher than that of CBD. In addition, both CBD and CBD/(γ-PGA-g-CHOL)NMs significantly enhanced Caco-2 cell viability and TEER, lowered the secretion levels of inflammatory cytokines, and alleviated inflammation. Moreover, CBD/(γ-PGA-g-CHOL)NMs demonstrated stronger anti-inflammatory effect. It can be inferred that γ-PGA-g-CHOL blank nanomicelles are good carriers of CBD, being capable of prolonging the circulation time of CBD in the blood, improving the bioavailability and tissue distribution concentration of CBD, and protecting against LPS-induced inflammatory injury. The findings can provide an experimental basis for the development and clinical application of oral CBD preparations.
Animals
;
Cannabidiol/administration & dosage*
;
Polyglutamic Acid/analogs & derivatives*
;
Humans
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Anti-Inflammatory Agents/administration & dosage*
;
Micelles
;
Caco-2 Cells
;
Cholesterol/pharmacokinetics*
;
Tissue Distribution
;
Nanoparticles/chemistry*
9.Effect and mechanism of combined use of active components of Buyang Huanwu Decoction in ameliorating neuronal injury induced by OGD/R.
Cun-Yan DAN ; Meng-Wei RONG ; Xiu LOU ; Tian-Qing XIA ; Bao-Guo XIAO ; Hong GUO ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(4):1098-1110
Buyang Huanwu Decoction(BYHWD), as one of the classic formulas in traditional Chinese medicine(TCM) for the treatment of cerebral ischemic stroke(CIS), has demonstrated definite effects in clinical practice. However, the material basis and mechanism of treatment have not been systematically elucidated. This study employed network pharmacology and molecular docking to analyze the potential targets and mechanisms of blood-and brain-penetrating active components of BYHWD in reducing cell apoptosis in CIS. Cell experiments were then carried out to validate the prediction results. In the experiments, five active components including hydroxysafflor yellow A( HSYA), tetramethylpyrazine( TMP), astragaloside Ⅳ( AS-Ⅳ), amygdalin( AMY), and paeoniflorin(PF) were selected to explore the pharmacological effects of BYHWD. HT22 cells were treated with BYHWD, and the cell counting kit-8(CCK-8) method was employed to examine the toxic and side effects of BYHWD. A cell model of oxygen-glucose deprivation/reoxygenation( OGD/R) was constructed, with apoptosis and pyroptosis as the main screening indicators. The levels of lactate dehydrogenase(LDH) and glutathione(GSH) were measured to assess the cell membrane integrity. Flow cytometry was employed to detect apoptosis, and the activities of caspase-3 and caspase-1 were measured to clarify the status of apoptosis and pyroptosis. ELISA was employed to determine the levels of interleukin(IL)-1β and IL-18 to confirm pyroptosis. HSYA and AMY were identified in this study as the active components regulating apoptosis and pyroptosis. TUNEL was employed to detect the apoptosis rate, and Western blot was employed to determine the expression levels of apoptosis-related proteins B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and caspase-3, which confirmed that the anti-apoptotic effect of the combined component group was superior to that of the single component groups. The molecular docking results revealed strong binding affinity of HSYA and AMY with SDF-1α and CXCR4.AMD3100, a selective antagonist of CXCR4, was then used for intervention. The results of Western blot showed alterations in the expression levels of apoptosis-associated proteins, SDF-1α, and CXCR4. In conclusion, HSYA and AMY influence cellular apoptosis by modulating the SDF-1α/CXCR4 signaling cascade.
Drugs, Chinese Herbal/chemistry*
;
Apoptosis/drug effects*
;
Animals
;
Neurons/cytology*
;
Mice
;
Molecular Docking Simulation
;
Cell Line
;
Glucose/metabolism*
;
Humans
;
Neuroprotective Agents/pharmacology*
10.Metabolomics combined with network pharmacology reveals mechanism of Jiaotai Pills in treating depression.
Guo-Liang DAI ; Ze-Yu CHEN ; Yan-Jun WANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Bing-Ting SUN ; Xiao-Yong WANG ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(5):1340-1350
This study aims to explore the mechanism of Jiaotai Pills in treating depression based on metabolomics and network pharmacology. The chemical constituents of Jiaotai Pills were identified by UHPLC-Orbitrap Exploris 480, and the targets of Jiaotai Pills and depression were retrieved from online databases. STRING and Cytoscape 3.7.2 were used to construct the protein-protein interaction network of core targets of Jiaotai Pills in treating depression and the "compound-target-pathway" network. DAVID was used for Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses of the core targets. The mouse model of depression was established with chronic unpredictable mild stress(CUMS) and treated with different doses of Jiaotai Pills. The behavioral changes and pathological changes in the hippocampus were observed. UHPLC-Orbitrap Exploris 120 was used for metabolic profiling of the serum, from which the differential metabolites and related metabolic pathways were screened. A "metabolite-reaction-enzyme-gene" network was constructed for the integrated analysis of metabolomics and network pharmacology. A total of 34 chemical components of Jiaotai Pills were identified, and 143 core targets of Jiaotai Pills in treating depression were predicted, which were mainly involved in the arginine and proline, sphingolipid, and neurotrophin metabolism signaling pathways. The results of animal experiments showed that Jiaotai Pills alleviated the depression behaviors and pathological changes in the hippocampus of the mouse model of CUMS-induced depression. In addition, Jiaotai Pills reversed the levels of 32 metabolites involved in various pathways such as arginine and proline metabolism, sphingolipid metabolism, and porphyrin metabolism in the serum of model mice. The integrated analysis showed that arginine and proline metabolism, cysteine and methionine metabolism, and porphyrin metabolism might be the key pathways in the treatment of depression with Jiaotai Pills. In conclusion, metabolomics combined with network pharmacology clarifies the antidepressant mechanism of Jiaotai Pills, which may provide a basis for the clinical application of Jiaotai Pills in treating depression.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Depression/genetics*
;
Mice
;
Network Pharmacology
;
Metabolomics
;
Male
;
Disease Models, Animal
;
Humans
;
Protein Interaction Maps/drug effects*
;
Antidepressive Agents


Result Analysis
Print
Save
E-mail