1.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
2.Vibration-controlled transient elastography in shaping the epidemiology and management of steatotic liver disease: Editorial on “Current burden of steatotic liver disease and fibrosis among adults in the United States, 2017–2023”
Xiao-Dong ZHOU ; Terry Cheuk-Fung YIP ; Daniel Q HUANG ; Mark Dhinesh MUTHIAH ; Mazen NOUREDDIN ; Ming-Hua ZHENG
Clinical and Molecular Hepatology 2025;31(2):620-624
3.Vibration-controlled transient elastography in shaping the epidemiology and management of steatotic liver disease: Editorial on “Current burden of steatotic liver disease and fibrosis among adults in the United States, 2017–2023”
Xiao-Dong ZHOU ; Terry Cheuk-Fung YIP ; Daniel Q HUANG ; Mark Dhinesh MUTHIAH ; Mazen NOUREDDIN ; Ming-Hua ZHENG
Clinical and Molecular Hepatology 2025;31(2):620-624
4.Vibration-controlled transient elastography in shaping the epidemiology and management of steatotic liver disease: Editorial on “Current burden of steatotic liver disease and fibrosis among adults in the United States, 2017–2023”
Xiao-Dong ZHOU ; Terry Cheuk-Fung YIP ; Daniel Q HUANG ; Mark Dhinesh MUTHIAH ; Mazen NOUREDDIN ; Ming-Hua ZHENG
Clinical and Molecular Hepatology 2025;31(2):620-624
5.Exploration of pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in treatment of gouty arthritis based on UPLC-Q-Exactive Orbitrap-MS technology and network pharmacology.
Yan XIAO ; Ting ZHANG ; Ying-Jie ZHANG ; Bin HUANG ; Peng CHEN ; Xiao-Hua CHEN ; Ming-Qing HUANG ; Xue-Ting CHEN ; You-Xin SU ; Jie-Mei GUO
China Journal of Chinese Materia Medica 2025;50(2):444-488
Based on ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology and network pharmacology, this study explored the pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in the treatment of gouty arthritis(GA). UPLC-Q-Exactive Orbitrap-MS technology was used to identify the components in Huazhuo Sanjie Chubi Decoction, and the qualitative analysis of its active ingredients was carried out, with a total of 184 active ingredients identified. A total of 897 active ingredient targets were screened through the PharmMapper database, and 491 GA-related disease targets were obtained from the OMIM, GeneCards, CTD databases. After Venn analysis, 60 intersecting targets were obtained. The component target-GA target network was constructed through the Cytoscape platform, and the STRING database was used to construct a protein-protein interaction network, with 16 core targets screened. The core targets were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses, and the component-target-pathway network was constructed. It was found that the main active ingredients of the formula for the treatment of GA were phenols, flavonoids, alkaloids, and terpenoids, and the key targets were SRC, MMP3, MMP9, REN, ALB, IGF1R, PPARG, MAPK1, HPRT1, and CASP1. Through GO analysis, it was found that the treatment of GA mainly involved biological processes such as lipid response, bacterial response, and biostimulus response. KEGG analysis showed that the pathways related to the treatment of GA included lipids and atherosclerosis, neutrophil extracellular traps(NETs), IL-17, and so on. In summary, phenols, flavonoids, alkaloids, and terpenoids may be the core pharmacodynamic substances of Huazhuo Sanjie Chubi Decoction in the treatment of GA, and the pharmacodynamic mechanism may be related to SRC, MMP3, MMP9, and other targets, as well as lipids and atherosclerosis, NETs, IL-17, and other pathways.
Drugs, Chinese Herbal/therapeutic use*
;
Network Pharmacology
;
Arthritis, Gouty/metabolism*
;
Chromatography, High Pressure Liquid/methods*
;
Humans
;
Mass Spectrometry/methods*
;
Protein Interaction Maps/drug effects*
6.Banxia Xiexin Decoction suppresses malignant phenotypes of colon cancer cells via PARG/PARP1/NF-κB signaling pathway.
Yu-Qing HUANG ; Jia-Mei WANG ; Heng-Zhou LAI ; Chong XIAO ; Feng-Ming YOU ; Qi-Xuan KUANG ; Yi-Fang JIANG
China Journal of Chinese Materia Medica 2025;50(2):496-506
This study aims to delve into the influences and underlying mechanisms of Banxia Xiexin Decoction(BXD) on the proliferation, apoptosis, invasion, and migration of colon cancer cells. Firstly, the components of BXD in blood were identified by UPLC-MS/MS, and subsequently the content of these components were determined by HPLC. Then, different concentrations of BXD were used to treat both the normal intestinal epithelial cells(NCM460) and the colon cancer cells(HT29 and HCT116). The cell viability and apoptosis were examined by the cell counting kit-8(CCK-8) and flow cytometry, respectively. Western blot was employed to determine the expression of the apoptosis regulators B-cell lymphoma-2(Bcl-2) and Bcl-2-associated X(Bax). The cell wound healing assay and Transwell assay were employed to measure the cell migration and invasion, respectively. Additionally, Western blot was employed to determine the expression levels of epithelial-mesenchymal transition(EMT)-associated proteins, including epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), and vimentin. The protein and mRNA levels of the factors in the poly(ADP-ribose) glycohydrolase(PARG)/poly(ADP-ribose) polymerase 1(PARP1)/nuclear factor kappa-B p65(NF-κB p65) signaling pathway were determined by Western blot and RT-qPCR, respectively. The results demonstrated that following BXD intervention, the proliferation of HT29 and HCT116 cells was significantly reduced. Furthermore, BXD promoted the apoptosis, enhanced the expression of Bcl-2, and suppressed the expression of Bax in colon cancer cells. At the same time, BXD suppressed the cell migration and invasion and augmented the expression of E-cadherin while diminishing the expression of N-cadherin and vimentin. In addition, BXD down-regulated the protein and mRNA levels of PARG, PARP1, and NF-κB p65. In conclusion, BXD may inhibit the malignant phenotypes of colon cancer cells by mediating the PARG/PARP1/NF-κB signaling pathway.
Colonic Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Phenotype
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Apoptosis
;
Cell Movement/drug effects*
;
Neoplasm Invasiveness
;
HCT116 Cells
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Humans
;
Poly (ADP-Ribose) Polymerase-1
;
Glycoside Hydrolases
;
bcl-2-Associated X Protein
;
NF-kappa B p50 Subunit
7.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
8.Systematic review and Meta-analysis of efficacy and safety of Wumei Pills in treatment of type 2 diabetes mellitus.
Wei-Jin HUANG ; Yun-Yi YANG ; Jia-Yuan CAI ; Xiao-Xiao QU ; Yan-Ming HE ; Hong-Jie YANG
China Journal of Chinese Materia Medica 2025;50(12):3441-3451
Wumei Pills, a classic traditional Chinese medicine(TCM) formula, are widely used in the treatment of biliary ascariasis and diarrhea. In recent years, studies have shown that Wumei Pills have advantages in the treatment of type 2 diabetes mellitus(T2DM), while there are no relevant reports that systematically evaluate the efficacy of Wumei Pills in the treatment of T2DM. This study addresses this issue by systematically evaluating the efficacy and safety of Wumei Pills, aiming to provide an evidence-based basis for clinical practice. PubMed, Cochrane Library, EMbase, Web of Science, CNKI, Wanfang, and VIP were researched for the randomized controlled trial(RCT) involving Wumei Pills for the treatment of T2DM that were published from inception to September 2024. RevMan 5.3 was used for the Meta-analysis of the data. A total of 18 RCTs were included, with a total of 1 437 patients. Meta-analysis produced the following results.(1)Treatment group outperformed control group in terms of overall response rate(RR=1.28, 95%CI[1.14, 1.43], P<0.000 1), fasting blood glucose(FPG)(WMD=-0.69, 95%CI[-0.93,-0.46], P<0.000 01), two-hour postprandial plasma glucose(2hPG)(WMD=-0.74, 95%CI[-1.17,-0.31], P<0.000 7), glycated hemoglobin(HbA1c)(WMD=-0.39, 95%CI[-0.60,-0.18], P=0.000 3), high-density lipoprotein(HDL)(WMD=0.38, 95%CI[0.28, 0.48], P<0.000 01), and body mass index(BMI)(WMD=-1.41, 95%CI[-2.40,-0.42], P=0.005).(2)The two groups had comparable effects regarding total cholesterol(TC)(WMD=-0.53, 95%CI[-1.13, 0.08], P=0.09) and low-density lipoprotein(LDL)(WMD=-0.25, 95%CI[-0.56, 0.06], P=0.12).(3)Triglycerides(TG)(WMD=-0.28,95%CI [-0.59,0.03],P=0.08), sensitivity analysis showed potential reduction effect(WMD=-0.20,95%CI[-0.36,-0.04],P=0.01). Occurrence of adverse drug reaction(RR=0.43,95%CI [0.23,0.80],P=0.007), sensitivity analysis showed significant disappearance(RR=0.56,95%CI[0.26,1.22],P=0.14), suggesting that the efficacy of treatment group was not better than that of control group. The results indicate that the treatment of T2DM with Wumei Pills is greatly related to the improvement of glucose metabolism, lipid metabolism, and clinical efficacy. The findings provide a basis for clinical application of Wumei Pills in treating T2DM, while the conclusion remains to be verified by clinical studies with higher quality.
Humans
;
Diabetes Mellitus, Type 2/blood*
;
Drugs, Chinese Herbal/administration & dosage*
;
Randomized Controlled Trials as Topic
;
Blood Glucose/metabolism*
;
Hypoglycemic Agents/therapeutic use*
;
Treatment Outcome
;
Glycated Hemoglobin/metabolism*
;
Female
9.Quality changes of volatile oil and chlorogenic acid compounds during extraction process of Artemisiae Argyi Folium: process analysis based on chemical composition, physicochemical properties, and biological activity.
Dan-Dan YANG ; Hao-Zhou HUANG ; Xin-Ming CHEN ; Lin HUANG ; Ya-Nan HE ; Zhen-Feng WU ; Xiao-Ming BAO ; Ding-Kun ZHANG ; Ming YANG
China Journal of Chinese Materia Medica 2025;50(11):3001-3012
To explore the variation laws of volatile oil during the extraction process of Artemisiae Argyi Folium and its impact on the quality of the medicinal solution, as well as to achieve precise control of the extraction process, this study employed headspace solid phase microextraction gas chromatography-mass spectrometry(HS-SPME-GC-MS) in combination with multiple light scattering techniques to conduct a comprehensive analysis, identification, and characterization of the changes in volatile components and the physical properties of the medicinal solution during the extraction process. A total of 82 volatile compounds were identified using the HS-SPME-GC-MS technique, including 21 alcohols, 15 alkenes, 14 ketones, 9 acids, 6 aldehydes, 5 phenols, 3 esters, and 9 other types of compounds. At different extraction time points(15, 30, 45, and 60 min), 71, 72, 64, and 44 compounds were identified in the medicinal solution, respectively. It was observed that the content of volatile components gradually decreased with the extension of extraction time. Through multivariate statistical analysis, four compounds with significant differences during different extraction time intervals were identified, namely 1,8-cineole, terpinen-4-ol, 3-octanone, and camphor. RESULTS:: from multiple light scattering techniques indicated that at 15 minutes of extraction, the transmittance of the medicinal solution was the lowest(25%), the particle size was the largest(0.325-0.350 nm), and the stability index(turbiscan stability index, TSI) was the highest(0-2.5). With the extension of extraction time, the light transmittance of the medicinal solution improved, stability was enhanced, and the particle size decreased. These laws of physicochemical property changes provide important basis for the control of Artemisiae Argyi Folium extraction process. In addition, the changes in the bioactivity of Artemisiae Argyi Folium extracts during the extraction process were investigated through mouse writhing tests and antimicrobial assays. The results indicated that the analgesic and antimicrobial effects of the medicinal solution were strongest at the 15-minute extracting point. In summary, the findings of this study demonstrate that the content of volatile oil in Artemisiae Argyi Folium extracts gradually decreases with the extension of extraction time, and the variation in volatile oil content directly influences the physicochemical properties and pharmacological efficacy of the medicinal solution. This discovery provides important scientific reference for the optimization of Artemisiae Argyi Folium extraction processes and the development and application of process analytical technologies.
Oils, Volatile/pharmacology*
;
Artemisia/chemistry*
;
Gas Chromatography-Mass Spectrometry
;
Drugs, Chinese Herbal/pharmacology*
;
Chlorogenic Acid/pharmacology*
;
Solid Phase Microextraction
;
Quality Control
10.Mechanistic of Yueju Wan volatile oil in inhibiting inflammation for antidepressant effects by regulating AGE/PI3K/Akt pathway.
Tan-Lu CHU ; Ze-Jun GUO ; Wei ZHANG ; Ling-Feng WANG ; Shu-Rui LYU ; Wan-Yu GUO ; Xiao-Ming ZHONG ; Feng-Mei QIU ; Zhen HUANG
China Journal of Chinese Materia Medica 2025;50(11):3147-3158
The antidepressant activity and molecular mechanisms of Yueju Wan volatile oil were investigated. The Yueju Wan volatile oil was extracted by using supercritical CO_2. Gas chromatography-mass spectrometry(GC-MS) combined with network pharmacology identified 28 chemical constituents in Yueju Wan volatile oil, primarily terpenes and lactones. A total of 123 overlapping targets were associated with depression, including core targets of interleukin-1β(IL-1β), signal transducer and activator of transcription 3(STAT3), and caspase-3(CASP3). These targets were mainly involved in the prolactin, advanced glycation end products/receptor(AGE/RAGE), and phosphoinositide 3-kinase/protein kinase B(PI3K/Akt) signaling pathways. A reserpine-induced depression mouse model was established to evaluate the therapeutic effects and mechanisms of Yueju Wan volatile oil. The effects of Yueju Wan volatile oil on depression-like behavior in mice were evaluated by analyzing body mass, body temperature index, tail suspension immobility time, forced swimming immobility time, and sucrose preference. Hematoxylin-eosin(HE) staining revealed neuronal protection of Yueju Wan volatile oil in the brain of mice. Enzyme-linked immunosorbent assay(ELISA) and Western blot were employed to detect the protein expression of AGEs, IL-1β, phosphorylated PI3K(p-PI3K), Akt, phosphorylated Akt(p-Akt), nuclear factor κB(NF-κB), and brain-derived neurotrophic factor(BDNF). Behavioral evaluation showed that Yueju Wan volatile oil could effectively control the decline of body mass and body temperature of depressed mice, reduce tail suspension and swimming immobility time, and enhance their preference for sucrose. Histopathological examination showed that Yueju Wan volatile oil could alleviate the neuronal damage in CA1 and dentate gyrus(DG) of the hippocampus of mice. ELISA and Western blot results showed that Yueju Wan volatile oil could significantly increase the protein expression levels of PI3K, Akt, and BDNF and significantly decrease the protein expression levels of AGEs, IL-1β, p-PI3K, p-Akt, and NF-κB in the hippocampus of mice. Furthermore, the p-PI3K/PI3K and p-Akt/Akt ratios were significantly decreased at medium and high doses. These findings suggest that the aromatherapy of Yueju Wan volatile oil can significantly improve reserpine-induced depression-like behavior in mice, which may be related to reducing the expression of neuronal membrane protein AGEs, reducing the phosphorylation levels of PI3K and Akt, inhibiting NF-κB entry into the nucleus, and alleviating the release of pro-inflammatory factors and nerve injury.
Animals
;
Antidepressive Agents/chemistry*
;
Mice
;
Proto-Oncogene Proteins c-akt/immunology*
;
Phosphatidylinositol 3-Kinases/immunology*
;
Oils, Volatile/chemistry*
;
Male
;
Drugs, Chinese Herbal/chemistry*
;
Signal Transduction/drug effects*
;
Depression/metabolism*
;
Glycation End Products, Advanced/immunology*
;
Humans

Result Analysis
Print
Save
E-mail