1.Classic Traditional Chinese Medicine Prescriptions in Treatment of Cancer-related Anemia: A Review
Kai YANG ; Dongju HU ; Huiying XIAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):335-346
Anemia is one of the common accompanying symptoms of tumors. Whether chemotherapy-related anemia (CRA) or anemia caused by the disease itself, it greatly affects patients' survival rate, quality of life, and even their confidence in treatment. Currently, Western medicine mainly treats CRA through blood product transfusion and the use of erythropoietin, which can rapidly increase hemoglobin levels but are associated with strong dependence and short duration of efficacy. Therefore, exploring the theoretical basis, treatment methods, and advantages of traditional Chinese medicine (TCM) in managing CRA has become a focus of current research. According to recent clinical observations and related reports, TCM demonstrates favorable clinical efficacy in the treatment of CRA. By reviewing literature on classic TCM prescriptions for CRA, this article summarizes clinical cases, relevant pharmacological studies, and possible mechanisms of action. These analyses show that classic TCM prescriptions for CRA are mainly tonifying formulas, primarily those that tonify qi and blood and strengthen the spleen and kidney, and they offer clear therapeutic efficacy, high safety, and the potential to reduce toxicity and enhance effectiveness. In addition to tonifying formulas, modern prescriptions for CRA, such as those that promote blood circulation and remove stasis, promote new blood generation, and exert detoxifying and anticancer effects, have also been confirmed by clinical research to provide good therapeutic outcomes. By summarizing and analyzing the efficacy and mechanisms of classic TCM prescriptions for CRA and the clinical research status of modern formulas, this article aims to provide new strategies for the clinical diagnosis and treatment of CRA.
2.Differences in chemical components and quality analysis of Gardenia jasminoides before and after processing with ginger
Lihua TANG ; Yu WU ; Xuedi HUANG ; Xiaolian HU ; Yi TANG ; Zilong CHEN ; Xiaofan XIAO ; Xide YE
China Pharmacy 2026;37(2):168-173
OBJECTIVE To analyze the differences in chemical components of Gardenia jasminoides before and after processing with ginger, and to evaluate the quality differences among different producing areas. METHODS Ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry was used to analyze the compositional differences of G. jasminoides before and after processing with ginger. The water content, total ash, and ethanol-soluble extract content of ginger- processed G. jasminoides were determined according to the 2020 edition of Chinese Pharmacopoeia. High performance liquid chromatography was adopted to determine the contents of genipin gentiobioside, geniposide, crocin Ⅰ and crocin Ⅱ in ginger- processed G. jasminoides. RESULTS A total of 49 chemical components were identified from raw G. jasminoides and ginger- processed G. jasminoides, including 14 flavonoids, 15 iridoids, 10 organic acids, 2 alkaloids and 8 other compounds. Among them, 42 components were detected in raw G. jasminoides, 28 in ginger-processed G. jasminoides, and 21 components were common to both. After processing with ginger, raw G. jasminoides lost 21 components (including iridoids, flavonoids, alkaloids, and others), while 7 chemical components were added (including coumarins, organic acids, organic acid esters, and flavonoids). For the 15 batches of ginger-processed G. jasminoides, the water content ranged from 5.64% to 7.11%, total ash from 2.92% to 4.87%, and ethanol-soluble extract from 40.61% to 58.02%. The average contents of genipin gentiobioside, geniposide, crocin Ⅰ and crocin Ⅱ were 0.108 7, 0.542 2, 0.565 0, and 0.012 5 mg/g, respectively. CONCLUSIONS After processing with ginger, G. jasminoides loses 21 components, while 7 new components are added. Differences are observed in the water content, total ash, ethanol-soluble extract, and the contents of genipin gentiobioside, geniposide, crocin Ⅰ, and crocin Ⅱ of ginger-processed G. jasminoides from different producing areas. Notably, samples from Fujian exhibit high contents of genipin gentiobioside and ethanol-soluble extract, while samples from Jiangxi have a high content of crocin Ⅰ.
3.Effects of different exercise interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats
Shujuan HU ; Ping CHENG ; Xiao ZHANG ; Yiting DING ; Xuan LIU ; Rui PU ; Xianwang WANG
Chinese Journal of Tissue Engineering Research 2025;29(2):269-278
BACKGROUND:Carboxylesterase 1 and inflammatory factors play a crucial role in regulating lipid metabolism and glucose homeostasis.However,the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats remain to be revealed. OBJECTIVE:To investigate the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats. METHODS:Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into normal control group(n=12)and modeling group(n=20)after 1 week of adaptive feeding.Rat models of type 2 diabetes mellitus were prepared by high-fat diet and single injection of streptozotocin.After successful modeling,the rats were randomly divided into diabetic control group(n=6),moderate-intensity exercise group(n=6)and high-intensity intermittent exercise group(n=6).The latter two groups were subjected to treadmill training at corresponding intensities,once a day,50 minutes each,and 5 days per week.Exercise intervention in each group was carried out for 6 weeks.After the intervention,ELISA was used to detect blood glucose and blood lipids of rats.The morphological changes of skeletal muscle were observed by hematoxylin-eosin staining.The mRNA expression levels of carboxylesterase 1 and inflammatory cytokines were detected by real-time quantitative PCR.The protein expression levels of carboxylesterase 1 and inflammatory cytokines were detected by western blot and immunofluorescence. RESULTS AND CONCLUSION:Compared with the normal control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,insulin resistance index in the diabetic control group were significantly increased(P<0.01),insulin activity was decreased(P<0.05),and the mRNA and protein levels of carboxylesterase 1,never in mitosis gene A related kinase 7(NEK7)and interleukin 18 in skeletal muscle tissue were upregulated(P<0.05).Compared with the diabetic control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,and insulin resistance index in the moderate-intensity exercise group and high-intensity intermittent exercise group were down-regulated(P<0.05),and insulin activity was increased(P<0.05).Moreover,compared with the diabetic control group,the mRNA level of NEK7 and the protein levels of carboxylesterase 1,NEK7 and interleukin 18 in skeletal muscle were decreased in the moderate-intensity exercise group(P<0.05),while the mRNA levels of carboxylesterase 1,NEK7,NOD-like receptor heat protein domain associated protein 3 and interleukin 18 and the protein levels of carboxylesterase 1 and interleukin 18 in skeletal muscle were downregulated in the high-intensity intermittent exercise group(P<0.05).Hematoxylin-eosin staining showed that compared with the diabetic control group,the cavities of myofibers in the moderate-intensity exercise group became smaller,the number of internal cavities was reduced,and the cellular structure tended to be more intact;the myocytes of rats in the high-intensity intermittent exercise group were loosely arranged,with irregular tissue shape and increased cavities in myofibers.To conclude,both moderate-intensity exercise and high-intensity intermittent exercise can reduce blood glucose,lipid,insulin resistance and carboxylesterase 1 levels in type 2 diabetic rats.Moderate-intensity exercise can significantly reduce the expression level of NEK7 protein in skeletal muscle,while high-intensity intermittent exercise can significantly reduce the expression level of interleukin 18 protein in skeletal muscle.In addition,the level of carboxylesterase 1 is closely related to the levels of NEK7 and interleukin 18.
4.Cervical lordosis ratio can be used as a decision-making indicator for selection of posterior surgical approach for multi-level cervical spondylotic myelopathy
Jiahang MIAO ; Sheng MA ; Qupeng LI ; Huilin YU ; Tianyu HU ; Xiao GAO ; Hu FENG
Chinese Journal of Tissue Engineering Research 2025;29(9):1796-1802
BACKGROUND:At present,research has only shown that the cervical lordosis ratio can be an important factor in predicting the loss of lordosis curvature after laminoplasty,and no one has studied whether the cervical lordosis ratio,a dynamic level indicator,can be one of the decision-making factors for the selection of posterior cervical surgical procedures. OBJECTIVE:To investigate whether the cervical lordosis ratio,an index of cervical hyperextension and hyperflexion,can be used as a selective index for laminoplasty and laminectomy fusion. METHODS:A retrospective review of 141 patients who had undergone posterior cervical surgery more than one year of follow-up due to multi-level cervical spondylotic myelopathy from December 2015 to March 2020 was performed.Among them,63 patients received laminectomy and fusion(laminectomy and fusion group)and 78 patients received laminoplasty(laminoplasty group).The demographic statistics(gender,age,body mass index,follow-up time),imaging indexes such as C2-7 Cobb angle,C2-7 range of motion,flexion Cobb angle,extension Cobb angle,flexion range of motion and extension range of motion,clinical effect indexes such as Japanese Orthopaedic Association score and visual analog scale score were compared between the two groups.The evaluation index of cervical lordosis alignment change was C2-7 Cobb angle difference before and after operation(ΔCL).Cervical lordosis ratio was equal to 100%×flexion range of motion/C2-7 range of motion.Receiver operating characteristic curve analysis was used to determine the role of cervical lordosis ratio in predicting postoperative severe cervical lordosis loss(ΔCL≤-10°).According to the critical value of cervical lordosis ratio(68.5%),all patients were divided into low cervical lordosis ratio group and high cervical lordosis ratio group.In these two ratio groups,the cervical lordosis alignment index and clinical effect index between the two operation groups were discussed again. RESULTS AND CONCLUSION:(1)Cervical lordosis alignment decreased after laminectomy and fusion and laminoplasty(P=0.039,P=0.002),and cervical lordosis alignment change in laminoplasty group(ΔCL)was greater than that of laminectomy and fusion group,and the difference between the two groups was statistically significant.(2)Based on receiver operating characteristic curve analysis,cervical lordosis ratio in predicting severe cervical lordosis alignment change(ΔCL≤-10°)had good identification ability(area under the curve=0.792).(3)In low cervical lordosis ratio group,there was no significant difference in cervical lordosis alignment change(ΔCL)between laminectomy and fusion group and laminoplasty group(P=0.141).(4)In high cervical lordosis ratio group,the ΔCL of laminoplasty group was greater than that in laminectomy and fusion group(P=0.001),which had a higher probability of postoperative severe cervical lordosis alignment change(ΔCL≤-10°)(43%,29%).(5)It is indicated that cervical lordosis ratio can be used as a decision-making index for the choice of posterior surgery for multi-level cervical spondylotic myelopathy.Laminoplasty can be considered in the low cervical lordosis ratio group,while laminectomy and fusion can be considered in the high cervical lordosis ratio group.
5.Pathological changes in the total knee joint during spontaneous knee osteoarthritis in guinea pigs at different months of age
Xiaoshen HU ; Huijing LI ; Junling LYU ; Xianjun XIAO ; Juan LI ; Xiang LI ; Ling LIU ; Rongjiang JIN
Chinese Journal of Tissue Engineering Research 2025;29(11):2218-2224
BACKGROUND:The guinea pig is considered to be the most useful spontaneous model for evaluating primary osteoarthritis in humans because of its similar knee joint structure and close histopathologic features to those of humans. OBJECTIVE:To investigate the pathological process of spontaneous knee osteoarthritis in guinea pigs by analyzing the histopathology of the total knee joint of guinea pigs aged 1 to 18 months. METHODS:Eight healthy female Hartley guinea pigs in each age group of 1,6,10,14,16,and 18 months old were selected.The quadriceps femoris was taken for hematoxylin-eosin staining,and the total knee joint was stained with hematoxylin-eosin and toluidine blue.The histopathology of the cartilage,subchondral bone,synovium,meniscus,and muscles were observed under light microscope.Mankin's score and synovitis score were compared,and the correlation analysis was conducted. RESULTS AND CONCLUSION:As the guinea pig age increased,the Mankin's score increased(P<0.05),and the pathological score of synovitis also gradually increased(P<0.05),and there was a significant positive correlation between the two(r=0.641,P<0.001).The incidence rate of subchondral bone marrow lesion in 18-month-old guinea pigs was 50%,and the incidence of meniscus injury was 37.5%.In addition,osteophyte and narrowing of the joint space were observed,and only a few guinea pigs had inflammation in the quadriceps femoris.To conclude,guinea pigs develop significant cartilage defects,synovial inflammation,subchondral bone lesions,meniscus injury,osteophyte formation,and joint space narrowing as they age,all of which are similar to the pathological processes of primary knee osteoarthritis in humans,making it an ideal model of spontaneous knee osteoarthritis.
6.Role of SPINK in Dermatologic Diseases and Potential Therapeutic Targets
Yong-Hang XIA ; Hao DENG ; Li-Ling HU ; Wei LIU ; Xiao TAN
Progress in Biochemistry and Biophysics 2025;52(2):417-424
Serine protease inhibitor Kazal-type (SPINK) is a skin keratinizing protease inhibitor, which was initially found in animal serum and is widely present in plants, animals, bacteria, and viruses, and they act as key regulators of skin keratinizing proteases and are involved in the regulation of keratinocyte proliferation and inflammation, primarily through the inhibition of deregulated tissue kinin-releasing enzymes (KLKs) in skin response. This process plays a crucial role in alleviating various skin problems caused by hyperkeratinization and inflammation, and can greatly improve the overall condition of the skin. Specifically, the different members of the SPINK family, such as SPINK5, SPINK6, SPINK7, and SPINK9, each have unique biological functions and mechanisms of action. The existence of these members demonstrates the diversity and complexity of skin health and disease. First, SPINK5 mutations are closely associated with the development of various skin diseases, such as Netherton’s syndrome and atopic dermatitis, and SPINK5 is able to inhibit the activation of the STAT3 signaling pathway, thereby effectively preventing the metastasis of melanoma cells, which is important in preventing the invasion and migration of malignant tumors. Secondly, SPINK6 is mainly distributed in the epidermis and contains lysine and glutamate residues, which can act as a substrate for epidermal transglutaminase to maintain the normal structure and function of the skin. In addition, SPINK6 can activate the intracellular ERK1/2 and AKT signaling pathways through the activation of epidermal growth factor receptor and protease receptor-2 (EphA2), which can promote the migration of melanoma cells, and SPINK6 further deepens its role in stimulating the migration of malignant tumor cells by inhibiting the activation of STAT3 signaling pathway. This process further deepens its potential impact in stimulating tumor invasive migration. Furthermore, SPINK7 plays a role in the pathology of some inflammatory skin diseases, and is likely to be an important factor contributing to the exacerbation of skin diseases by promoting aberrant proliferation of keratinocytes and local inflammatory responses. Finally, SPINK9 can induce cell migration and promote skin wound healing by activating purinergic receptor 2 (P2R) to induce phosphorylation of epidermal growth factor and further activating the downstream ERK1/2 signaling pathway. In addition, SPINK9 also plays an antimicrobial role, preventing the interference of some pathogenic microorganisms. Taken as a whole, some members of the SPINK family may be potential targets for the treatment of dermatological disorders by regulating multiple biological processes such as keratinization metabolism and immuno-inflammatory processes in the skin. The development of drugs such as small molecule inhibitors and monoclonal antibodies has great potential for the treatment of dermatologic diseases, and future research on SPINK will help to gain a deeper understanding of the physiopathologic processes of the skin. Through its functions and regulatory mechanisms, the formation and maintenance of the skin barrier and the occurrence and development of inflammatory responses can be better understood, which will provide novel ideas and methods for the prevention and treatment of skin diseases.
7.The Use of Speech in Screening for Cognitive Decline in Older Adults
Si-Wen WANG ; Xiao-Xiao YIN ; Lin-Lin GAO ; Wen-Jun GUI ; Qiao-Xia HU ; Qiong LOU ; Qin-Wen WANG
Progress in Biochemistry and Biophysics 2025;52(2):456-463
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that severely affects the health of the elderly, marked by its incurability, high prevalence, and extended latency period. The current approach to AD prevention and treatment emphasizes early detection and intervention, particularly during the pre-AD stage of mild cognitive impairment (MCI), which provides an optimal “window of opportunity” for intervention. Clinical detection methods for MCI, such as cerebrospinal fluid monitoring, genetic testing, and imaging diagnostics, are invasive and costly, limiting their broad clinical application. Speech, as a vital cognitive output, offers a new perspective and tool for computer-assisted analysis and screening of cognitive decline. This is because elderly individuals with cognitive decline exhibit distinct characteristics in semantic and audio information, such as reduced lexical richness, decreased speech coherence and conciseness, and declines in speech rate, voice rhythm, and hesitation rates. The objective presence of these semantic and audio characteristics lays the groundwork for computer-based screening of cognitive decline. Speech information is primarily sourced from databases or collected through tasks involving spontaneous speech, semantic fluency, and reading, followed by analysis using computer models. Spontaneous language tasks include dialogues/interviews, event descriptions, narrative recall, and picture descriptions. Semantic fluency tasks assess controlled retrieval of vocabulary items, requiring participants to extract information at the word level during lexical search. Reading tasks involve participants reading a passage aloud. Summarizing past research, the speech characteristics of the elderly can be divided into two major categories: semantic information and audio information. Semantic information focuses on the meaning of speech across different tasks, highlighting differences in vocabulary and text content in cognitive impairment. Overall, discourse pragmatic disorders in AD can be studied along three dimensions: cohesion, coherence, and conciseness. Cohesion mainly examines the use of vocabulary by participants, with a reduction in the use of nouns, pronouns, verbs, and adjectives in AD patients. Coherence assesses the ability of participants to maintain topics, with a decrease in the number of subordinate clauses in AD patients. Conciseness evaluates the information density of participants, with AD patients producing shorter texts with less information compared to normal elderly individuals. Audio information focuses on acoustic features that are difficult for the human ear to detect. There is a significant degradation in temporal parameters in the later stages of cognitive impairment; AD patients require more time to read the same paragraph, have longer vocalization times, and produce more pauses or silent parts in their spontaneous speech signals compared to normal individuals. Researchers have extracted audio and speech features, developing independent systems for each set of features, achieving an accuracy rate of 82% for both, which increases to 86% when both types of features are combined, demonstrating the advantage of integrating audio and speech information. Currently, deep learning and machine learning are the main methods used for information analysis. The overall diagnostic accuracy rate for AD exceeds 80%, and the diagnostic accuracy rate for MCI also exceeds 80%, indicating significant potential. Deep learning techniques require substantial data support, necessitating future expansion of database scale and continuous algorithm upgrades to transition from laboratory research to practical product implementation.
8.Network toxicology and its application in studying exogenous chemical toxicity
Yanli LIN ; Zehua TAO ; Zhao XIAO ; Chenxu HU ; Bobo YANG ; Ya WANG ; Rongzhu LU
Journal of Environmental and Occupational Medicine 2025;42(2):238-244
With the continuous development of society, a large number of new chemicals are continuously emerging, which presents a challenge to current risk assessment and safety management of chemicals. Traditional toxicology research methods have certain limitations in quickly, efficiently, and accurately assessing the toxicity of many chemicals, and cannot meet the actual needs. In response to this challenge, computational toxicology that use mathematical and computer models to achieve the prediction of chemical toxicity has emerged. In the meantime, as researchers increasingly pay attention to understanding the interaction mechanisms between exogenous chemical substances and the body from the system level, and multiomics technologies develop rapidly such as genomics, transcriptomics, proteomics, and metabolomics, huge amounts of data have been generated, providing rich information resources for studying the interactions between chemical substances and biological molecules. System toxicology and network toxicology have also developed accordingly. Of these, network toxicology can integrate these multiomics data to construct biomolecular networks, and then quickly predict the key toxicological targets and pathways of chemicals at the molecular level. This paper outlined the concept and development of network toxicology, summarized the main methods and supporting tools of network toxicology research, expounded the application status of network toxicology in studying potential toxicity of exogenous chemicals such as agricultural chemicals, environmental pollutants, industrial chemicals, and foodborne chemicals, and analyzed the development prospects and limitations of network toxicology research. This paper aimed to provide a reference for the application of network toxicology in other fields.
9.Effects of Blue Light on Emmetropization in Guinea Pigs Based on Proteomic Analysis
Junxin XIAO ; Zhuoya QUAN ; Hu XIAO ; Thomas Cheun LAM ; Minyi ZHU ; Danyang WANG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(2):284-292
ObjectiveTo investigate the effect of blue light on emmetropization in guinea pigs, explore the potential mechanisms and assess its application in myopia prevention and control. MethodsThree-week-old male guinea pigs (n=20) were randomly assigned to the white light group and the blue light group. Refraction and ocular biological parameters were measured every 2 weeks until the experiment ended at week 8. And the 4D-data-independent acquisition (4D-DIA) proteomics technology was used to analyze retina from both the blue light and white light groups, exploring protein composition, expression differences, and biological functions. ResultsAfter 2 weeks, Guinea pigs exposed to white light gradually tended towards emmetropia, showing a statistically significant difference in refractive error compared to the blue light group (P<0.001). From week 4, the axial length of the blue light group was significantly shorter than that of the white light group (P<0.05). Meanwhile, the vitreous chamber length in the blue light group was significantly smaller than that of the white light group from week 2 (P<0.05). A total of 161 differentially expressed proteins were identified by proteomics technology in the retina, with 98 proteins upregulated and 63 proteins downregulated. These proteins were primarily enriched in biosynthetic pathways such as vesicle transport, redox reaction, niacin and nicotinamide metabolism and NAD+ metabolism. ConclusionsGuinea pigs raised under blue light exhibit hyperopic drift and slowed axial elongation, which slows the procession of emmetropization. Based on the 4D-DIA technology, the differentially expressed proteins between the blue light and white light groups are primarily involved in NAD+ metabolism, niacin and nicotinamide metabolism. Especially in NAD+ salvage synthesis, nicotinamide phosphoribosyl transferase (NAMPT) is upregulated, while sirtuin 2 (SIRT2) is downregulated. It provides new insights into the mechanism of blue light in emmetropization and a theoretical basis for myopia prevention and control.
10.Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease
Yicong PAN ; Wenhong JIANG ; Ming HU ; Xiao QIN
Laboratory Animal and Comparative Medicine 2025;45(3):279-289
Objective To establish a chronic kidney disease-associated aortic calcification model in SD rats using different nephrectomy surgical methods, and to compare and evaluate surgical duration and survival time to explore a more optimized modeling method. Methods According to different surgical methods, the SD rats were divided into four groups: Group A: intraperitoneal resection of 2/3 of the left kidney followed by right total nephrectomy in the second stage; Group B: intraperitoneal resection of 2/3 of the left kidney and simultaneous right total nephrectomy; Group C: dorsal approach right total nephrectomy followed by resection of 2/3 of the left kidney in the second stage; Group D: dorsal approach resection of 2/3 of the left kidney followed by right total nephrectomy in the second stage. After comparing survival curves of SD rats undergoing intraperitoneal versus dorsal approaches, and staged versus single-stage nephrectomy, the optimal nephrectomy surgical method was determined. Then, twenty-four 8-week-old SPF-grade male SD rats were selected for nephrectomy combined with calcitriol-induced calcification. Experimental group (12 rats): the dorsal approach left 2/3 nephrectomy followed by right total nephrectomy, with intraperitoneal injection of 1 μg/kg calcitriol administered one week later to induce aortic calcification. Control group (12 rats): the intraperitoneal injection of 250 μL/kg physiological saline containing 1% DMSO one week after sham surgery. After intraperitoneal injection of drugs for 3 months, the survival status of rats in each group was observed. Under anesthesia, blood samples were collected from each group to measure serum phosphorus and calcium ion concentrations, as well as serum urea nitrogen and creatinine levels. After euthanizing the rats, a post-mortem examination was performed to observe the residual kidney morphology, and HE staining was used to observe the pathological changes in the coronal section of the kidney. Additionally, the entire aorta of each group was taken, and the degree of aortic calcification was observed by staining with Alizarin red S and von Kossa. Real-time fluorescence quantitative PCR was used to detect the gene expression of smooth muscle actin-associated protein alpha (Sm22), Runt-related transcription factor 2 (Runx2), and osteopontin (OPN) in rat aortic tissue to evaluate the effectiveness of the model. Results The exploratory optimization experiment of different surgical procedures found that the survival rate of group D rats,which underwent 2/3 left kidney resection followed by right whole kidney resection via the dorsal approach, was the highest, indicating that this surgical procedure was the best method for establishing a chronic kidney disease model with renal dysfunction. The experimental group rats treated with this surgical procedure combined with high-dose calcitriol injection had significantly lower serum calcium ion concentration than those in the sham-operated control group (P<0.05), while serum phosphorus ion concentration, serum creatinine, and serum urea nitrogen levels were significantly higher than those of the control group (P<0.05). HE staining of the kidneys showed significant organic changes in the kidneys of the experimental group rats, with a significant decrease in glomerular count compared to that of the control group (P<0.05), indicating the successful establishment of a renal failure model. Alizarin red S staining showed significant pigment deposition in the aortic media of the experimental group rats, while von Kossa staining showed significant silver nitrate deposition in the aortic media of the experimental group rats, which was consistent with the manifestation of aortic calcification in renal failure. Real-time fluorescence quantitative PCR showed that the expression level of Sm22 in the aortic tissue of the experimental group rats decreased (P<0.05), while the expression levels of OPN and Runx2 increased (P<0.05), indicating a transition of aortic smooth muscle cells from smooth muscle phenotype to bone-like phenotype and successful induction of an aortic calcification model. Conclusion The method of establishing an aortic calcification model of chronic kidney disease in SD rats by first removing two-thirds of the left kidney via the dorsal approach followed by right total nephrectomy, combined with high-dose calcitriol administration, shortens the surgical time, improves the success rate of modeling, and increases the animal survival rate.

Result Analysis
Print
Save
E-mail