1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Acute Inflammatory Pain Induces Sex-different Brain Alpha Activity in Anesthetized Rats Through Optically Pumped Magnetometer Magnetoencephalography
Meng-Meng MIAO ; Yu-Xuan REN ; Wen-Wei WU ; Yu ZHANG ; Chen PAN ; Xiang-Hong LIN ; Hui-Dan LIN ; Xiao-Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):244-257
ObjectiveMagnetoencephalography (MEG), a non-invasive neuroimaging technique, meticulously captures the magnetic fields emanating from brain electrical activity. Compared with MEG based on superconducting quantum interference devices (SQUID), MEG based on optically pump magnetometer (OPM) has the advantages of higher sensitivity, better spatial resolution and lower cost. However, most of the current studies are clinical studies, and there is a lack of animal studies on MEG based on OPM technology. Pain, a multifaceted sensory and emotional phenomenon, induces intricate alterations in brain activity, exhibiting notable sex differences. Despite clinical revelations of pain-related neuronal activity through MEG, specific properties remain elusive, and comprehensive laboratory studies on pain-associated brain activity alterations are lacking. The aim of this study was to investigate the effects of inflammatory pain (induced by Complete Freund’s Adjuvant (CFA)) on brain activity in a rat model using the MEG technique, to analysis changes in brain activity during pain perception, and to explore sex differences in pain-related MEG signaling. MethodsThis study utilized adult male and female Sprague-Dawley rats. Inflammatory pain was induced via intraplantar injection of CFA (100 μl, 50% in saline) in the left hind paw, with control groups receiving saline. Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection. For MEG recording, anesthetized rats had an OPM positioned on their head within a magnetic shield, undergoing two 15-minute sessions: a 5-minute baseline followed by a 10-minute mechanical stimulation phase. Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms, generating spectrograms focused on the 4-30 Hz frequency range. ResultsMEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared, before and after saline/CFA injections. Mechanical stimulation elevated alpha activity in both male and female rats pre- and post-saline/CFA injections. Saline/CFA injections augmented average power in both sexes compared to pre-injection states. Remarkably, female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states. Furthermore, despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment, female rats displayed higher average power than males in the resting state after CFA injection. ConclusionThese results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts. Our study exhibits sex differences in alpha activities following CFA injection, highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state. Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals. In addition, the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.
3.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
4.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
5.Effects of Blue Light on Emmetropization in Guinea Pigs Based on Proteomic Analysis
Junxin XIAO ; Zhuoya QUAN ; Hu XIAO ; Thomas Cheun LAM ; Minyi ZHU ; Danyang WANG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(2):284-292
ObjectiveTo investigate the effect of blue light on emmetropization in guinea pigs, explore the potential mechanisms and assess its application in myopia prevention and control. MethodsThree-week-old male guinea pigs (n=20) were randomly assigned to the white light group and the blue light group. Refraction and ocular biological parameters were measured every 2 weeks until the experiment ended at week 8. And the 4D-data-independent acquisition (4D-DIA) proteomics technology was used to analyze retina from both the blue light and white light groups, exploring protein composition, expression differences, and biological functions. ResultsAfter 2 weeks, Guinea pigs exposed to white light gradually tended towards emmetropia, showing a statistically significant difference in refractive error compared to the blue light group (P<0.001). From week 4, the axial length of the blue light group was significantly shorter than that of the white light group (P<0.05). Meanwhile, the vitreous chamber length in the blue light group was significantly smaller than that of the white light group from week 2 (P<0.05). A total of 161 differentially expressed proteins were identified by proteomics technology in the retina, with 98 proteins upregulated and 63 proteins downregulated. These proteins were primarily enriched in biosynthetic pathways such as vesicle transport, redox reaction, niacin and nicotinamide metabolism and NAD+ metabolism. ConclusionsGuinea pigs raised under blue light exhibit hyperopic drift and slowed axial elongation, which slows the procession of emmetropization. Based on the 4D-DIA technology, the differentially expressed proteins between the blue light and white light groups are primarily involved in NAD+ metabolism, niacin and nicotinamide metabolism. Especially in NAD+ salvage synthesis, nicotinamide phosphoribosyl transferase (NAMPT) is upregulated, while sirtuin 2 (SIRT2) is downregulated. It provides new insights into the mechanism of blue light in emmetropization and a theoretical basis for myopia prevention and control.
6.Construction Strategies and Challenges of Vascularized Brain Organoids
Meng-Meng CHEN ; Nan HU ; Shuang-Qing BAO ; Xiao-Hong LI
Progress in Biochemistry and Biophysics 2025;52(7):1757-1770
Brain organoids are three-dimensional (3D) neural cultures that self-organize from pluripotent stem cells (PSCs) cultured in vitro. Compared with traditional two-dimensional (2D) neural cell culture systems, brain organoids demonstrate a significantly enhanced capacity to faithfully replicate key aspects of the human brain, including cellular diversity, 3D tissue architecture, and functional neural network activity. Importantly, they also overcome the inherent limitations of animal models, which often differ from human biology in terms of genetic background and brain structure. Owing to these advantages, brain organoids have emerged as a powerful tool for recapitulating human-specific developmental processes, disease mechanisms, and pharmacological responses, thereby providing an indispensable model for advancing our understanding of human brain development and neurological disorders. Despite their considerable potential, conventional brain organoids face a critical limitation: the absence of a functional vascular system. This deficiency results in inadequate oxygen and nutrient delivery to the core regions of the organoid, ultimately constraining long-term viability and functional maturation. Moreover, the lack of early neurovascular interactions prevents these models from fully recapitulating the human brain microenvironment. In recent years, the introduction of vascularization strategies has significantly enhanced the physiological relevance of brain organoid models. Researchers have successfully developed various vascularized brain organoid models through multiple innovative approaches. Biological methods, for example, involve co-culturing brain organoids with endothelial cells to induce the formation of static vascular networks. Alternatively, co-differentiation strategies direct both mesodermal and ectodermal lineages to generate vascularized tissues, while fusion techniques combine pre-formed vascular organoids with brain organoids. Beyond biological approaches, tissue engineering techniques have played a pivotal role in promoting vascularization. Microfluidic systems enable the creation of dynamic, perfusable vascular networks that mimic blood flow, while 3D printing technologies allow for the precise fabrication of artificial vascular scaffolds tailored to the organoid’s architecture. Additionally, in vivo transplantation strategies facilitate the formation of functional, blood-perfused vascular networks through host-derived vascular infiltration. The incorporation of vascularization has yielded multiple benefits for brain organoid models. It alleviates hypoxia within the organoid core, thereby improving cell survival and supporting long-term culture and maturation. Furthermore, vascularized organoids recapitulate critical features of the neurovascular unit, including the early structural and functional characteristics of the blood-brain barrier. These advancements have established vascularized brain organoids as a highly relevant platform for studying neurovascular disorders, drug screening, and other applications. However, achieving sustained, long-term functional perfusion while preserving vascular structural integrity and promoting vascular maturation remains a major challenge in the field. In this review, we systematically outline the key stages of human neurovascular development and provide a comprehensive analysis of the various strategies employed to construct vascularized brain organoids. We further present a detailed comparative assessment of different vascularization techniques, highlighting their respective strengths and limitations. Additionally, we summarize the principal challenges currently faced in brain organoid vascularization and discuss the specific technical obstacles that persist. Finally, in the outlook section, we elaborate on the promising applications of vascularized brain organoids in disease modeling and drug testing, address the main controversies and unresolved questions in the field, and propose potential directions for future research.
7.Regenerative endodontic procedures for a prematurely erupted maxillary premolar with immature roots and chronic apical periodontitis: a case report and literature review
WANG Xiao ; XIA Shang ; LIU Yan ; YANG Yu' ; e ; LI Hong
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):666-671
Objective:
To investigate treatment strategies for chronic periapical periodontitis in prematurely erupted premolars and provide guidance for managing pulp and periapical diseases in young permanent teeth with immature roots.
Methods:
A regenerative endodontic procedure (REP) was performed on a prematurely erupted maxillary left first premolar (tooth 24) at Nolla stage Ⅶ with chronic apical periodontitis, following standardized protocols including root canal irrigation, disinfection, and coronal sealing. The case was followed up, and a literature review was conducted.
Results:
Clinical resolution of symptoms was observed on tooth 24, with sustained root development. After a 20-month follow-up, the tooth had restored biological function. Literature synthesis revealed that periapical infections in prematurely erupted permanent teeth predominently arise from pulp exposure and bacterial infection, with retrograde infection being rare. For young permanent teeth with necrotic pulp, regenerative endodontic procedures has been established as the treatment of choice to promote apical closure and root maturation. The critical steps of regenerative endodontic procedures include thorough disinfection, induced bleeding to form a fibrin scaffold, and coronal sealing to facilitate stem cell recruitment and differentiation.
Conclusion
Regenerative endodontic procedures represents an effective and viable treatment option for prematurely erupted young permanent teeth with chronic periapical periodontitis.
8.Predicting model for the impact of Internet usage characteristics on suicidal ideation among vocational high school students
YU Bin, YAN Jingyan, ZHANG Liqun, XIAO Chenchang, LI Fang, GUO Yan, YAN Hong
Chinese Journal of School Health 2025;46(8):1175-1179
Objective:
To explore the association between the Internet usage characteristics and suicidal ideation among vocational high school students, so as to provide a theoretical basis for precise intervention of suicide among vocational high school students.
Methods:
A total of 1 781 students were recruited from three vocational high schools in Wuhan and Xianning in March 2023 by using the cluster random sampling method. The Columbia-Suicide Severity Rating Scale and Revised Chen Internet Addiction Scale were used to measure suicidal ideation and Internet addiction, respectively. LASSO regression model was used to select influential factors related to suicidal ideation, and the gradient boosting decision tree algorithm XGBoost was used to develop prediction models and evaluate predictive performance. By calculating the SHAP values, the contribution of each influential factor was quantified.
Results:
The prevalence of suicidal ideation among vocational high school students was 42.22% and prevalence of Internet addiction was 26.39%. LASSO regression results indicated that age, gender, experience of being left behind, parental relationship, holding a class cadre position, using the Internet for learning, Internet use during dawn, morning and late night, Internet addiction, and depressive symptoms were all the influential factors of suicidal ideation among vocational high school students ( β= -0.05 , 0.29, 0.09, 0.27, 0.10, -0.01, 0.09, 0.05, 0.24, 0.28, 0.78, all P <0.05). The AUC of the prediction model was 0.75. The results based on SHAP values indicated that all influential factors identified through multivariate analysis contributed positively to the model predictions ( SHAP >0). Among these, depressive symptoms and parental relationship had the greatest impact on suicidal ideation ( SHAP =0.77, 0.26), and the joint effect of features with higher contribution could improve the prediction probability.
Conclusions
Depressive symptoms, parental relationships, Internet addiction, and time of Internet use are most important risk factors of suicidal behaviors for vocational high school students. Thus, effective interventions should be conducted to reduce their suicidal ideation.
9.Relationship between illness perception and fear of progression in patients with chronic obstructive pulmonary disease: the mediating role of social support
Yuhong CAI ; Ling XIAO ; Binxue XIA ; Ling ZHENG ; Hong XIONG
Sichuan Mental Health 2025;38(4):346-351
BackgroundFear of progression is one of the typical psychological consequences in patients with chronic obstructive pulmonary disease (COPD). The level of fear of progression is affected by the illness perception status, and the link between social support and fear of progression is acknowledged, whereas the mechanism underlying the three remains unclear due to the lack of empirical research evidence and needs to be further studied. ObjectiveTo explore the mediating role of social support in the relationship between illness perception and fear of progression in COPD patients, and to provide references for effectively alleviating fear in COPD patients. MethodsA total of 435 COPD patients admitted to the Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University from March 9 to July 31, 2024 were selected as the study objects. The Chinese version of Fear of Progression Questionnaire-Short Form (FoP-Q-SF), Chinese version of Brief Illness Perception Questionnaire (BIPQ) and Social Support Rate Scale (SSRS) were used for the evaluation. Pearson's coefficient was calculated to assess the correlation among above scales. Model 4 of the Process macro 3.4.1 for SPSS 25.0 was used to test the mediating effect of social support on the relationship between illness perception and fear of progression, with Bootstrapping used to evaluate the significance of mediating effect. ResultsA total of 412 patients (94.71%) completed this study.BIPQ score was positively correlated with FoP-Q-SF score (r=0.238, P<0.01), and negatively correlated with SSRS score in COPD patients (r=-0.260, P<0.01). FoP-Q-SF score was negatively correlated with SSRS score (r=-0.271, P<0.01). Social support mediated the relationship between illness perception and fear of progression, with an indirect effect value of 0.025 (95% CI: 0.009~0.041), accounting for 13.02% of the total effect. ConclusionIllness perception can affect the fear of progression in COPD patients both directly and indirectly through social support. [Funded by Nursing Research Project of Sichuan Province (number, H22010)]
10.Survey on the status of medical radiation exposure and occupational radiation exposure levels in clinical nuclear medicine in Shanghai, China, 2023
Bin WANG ; Shunqi LU ; Jiangtao BAI ; Hong XIAO ; Linfeng GAO
Chinese Journal of Radiological Health 2025;34(4):477-483
Objective To investigate the basic situation of nuclear medicine diagnostic and treatment institutions in Shanghai, understand the development level and distribution characteristics of nuclear medicine in Shanghai, and assess the current status of nuclear medicine development in Shanghai. Methods Using questionnaires, on-site verification, and retrieval of information system records, a survey was carried out on nuclear medicine department staff, equipment, and personal radiation exposure levels of workers in Shanghai. Results As of December 2023, there were 48 nuclear medicine diagnostic and treatment institutions in Shanghai, including 32 (66.7%) tertiary hospitals. Of these, 24 (50%) hospitals performed 131I therapy, and 9 (18.8%) hospitals conducted 131I treatment for thyroid cancer. There were 681 nuclear medicine radiation workers, with an average annual effective dose from external radiation of 0.54 mSv. There were 137 pieces of nuclear medicine equipment, including 56 SPECT/CT, 42 PET/CT, 8 PET/MRI, 25 thyroid function meters, and 6 cyclotrons. In 2023, the total radioactivity of radionuclides used in Shanghai was 1.2 × 108 MBq, with 3.4 × 107 MBq of 18F, 7.4 × 107 MBq of 99mTc, and 1.2 × 107 MBq of 131I. The total annual number of nuclear medicine diagnostic and treatment procedures performed was 247 826 and the application frequency was 10.0 procedures per thousand population. Conclusion Clinical nuclear medicine in Shanghai has developed rapidly, achieving the Level I healthcare standard as defined in the UNSCEAR 2008 report. Enhancing occupational protection for radiation workers is a critical issue that requires particular attention in the next phase of development.


Result Analysis
Print
Save
E-mail