1.Fu′s academic thoughts of promoting conception based on the "qi cycle in round" theory
Yan LIU ; Haoxian WANG ; Xiangyu LI ; Shuo SUN ; Jiuxian LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):336-342
FU Qingzhu Nyuke·Zhongzi is a concentrated manifestation of Fu′s academic thoughts of promoting conception (Zhongzi), which affects the treatment of infertility in later generations. However, the Zhongzi chapter is named after "symptoms" and is not divided into chapters according to "syndromes, "limiting the clinical application of Fu′s thoughts of Zhongzi. The "qi circle in round" theory is the crystallization of HUANG Yuanyu′s academic thinking, advocating for qi transformation, emphasizing middle qi, and considering the four phenomena. This theory highlights the role of middle qi in the rise, fall, and circulation of disease development. The "qi cycle in round" theory, a comprehensive view of Fu′s Zhongzi chapter, reveals that FU Qingzhu emphasizes the transformation of visceral qi in diagnosing and treating infertility, focusing on the spleen, liver, and kidneys. His prescription aims to restore the overall qi mechanism of the body, highlighting the circulation of middle earth and the dredging of meridians, aligning perfectly with the theory of the "qi cycle in round." Therefore, this article argues from the perspective of the "qi cycle in round, "deconstructing the pathogenesis of Fu′s infertility based on the dereliction of spleen earth, stagnation of liver wood, and kidney yin and yang deficiency. It reorganizes Fu′s formula system of Zhongzi by mediating middle earth, soothing liver depression, and regulating kidney function, summarizing the characteristics of Fu′s thoughts of Zhongzi with the aid of qi around the waist and navel, simultaneous treatment of conqenital and acquired essence, and restriction and generation of five phases. Based on the "qi cycle in round" theory, this study explores Fu′s academic thoughts of Zhongzi to strengthen the organic integration of Fu′s academic thoughts of Zhongzi with the theory of "qi cycle in round, "providing new perspectives for the study and inheritance of Fu′s academic thoughts of Zhongzi.
2.Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty
Zhenhua LIN ; Xiangyu CHU ; Zhenxi WEI ; Chuanjun DONG ; Zenglin ZHAO ; Xiaoxia SUN ; Qingyu LI ; Qi ZHANG
Laboratory Animal and Comparative Medicine 2025;45(4):466-472
ObjectiveThe full name of vertebroplasty is percutaneous vertebroplasty (PVP). It is a clinical technique that injects bone cement into the diseased vertebral body to achieve strengthening of the vertebra. The research on the safety and efficacy of bone cement is the basis for clinical application. In this study, vertebroplasty is used to evaluate and compare the safety and efficacy of Tecres and radiopaque bone cement in experimental pigs, and to determine the puncture method suitable for pigs and the pre-clinical evaluation method for the safety and efficacy of bone cement. MethodsTwenty-four experimental pigs (with a body weight of 60-80 kg) were randomly divided into an experimental group (Group A) and a control group (Group B). Group A was the Tecres bone cement group, and Group B was the radiopaque bone cement group, with 12 pigs in each group. Under the monitoring of a C-arm X-ray machine, the materials were implanted into the 1st lumbar vertebra (L1) and 4th lumbar vertebra (L4) of the pigs via percutaneous puncture using the unilateral pedicle approach. The animals were euthanized at 4 weeks and 26 weeks after the operation, respectively. The L4 vertebrae were taken for compressive strength testing, and the L1 vertebrae were taken for hard tissue pathological examination to observe the inflammatory response, bone necrosis, and degree of osseointegration at the implantation site. ResultsThe test results of compressive strength between groups A and B showed no significant difference at 4 weeks and 26 weeks after bone cement implantation (P > 0.05). Observation under an optical microscope (×100) revealed that at 4 weeks postoperatively, both groups A and B showed that the bone cement was surrounded by proliferative fibrous tissue, with lymphocyte infiltration around it. The bone cement was combined with bone tissue, the trabecular arrangement was disordered, and osteoblasts and a small amount of osteoid were formed. At 26 weeks postoperatively, bone cement was visible in both groups A and B. The new bone tissue was mineralized, the trabeculae were fused, the trabecular structure was regular and dense with good continuity, and no obvious inflammatory reaction was observed. ConclusionIn experimental pig vertebrae, there were no significant differences observed in the compressive strength, inflammation response, bone destruction, and integration with the bone between Tecres and non-radiopaque bone cement. Both exhibited good biocompatibility and osteogenic properties. It indicates that using vertebroplasty to evaluate the safety and efficacy of bone cement in pigs is scientifically sound.
3.Mechanism of Cuscutae Semen-Salviae Miltiorrhizae Radix et Rhizoma in Regulating IL-6/STAT3 Signaling Pathway to Treat Recurrent Spontaneous Abortion Based on Network Pharmacology and Cell Experiment Validation
Haoxian WANG ; Jiuxian LI ; Yan LIU ; Shuo SUN ; Xiangyu LI ; Ke ZHANG ; Yuyu WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):22-30
ObjectiveTo explore the mechanism of action of Cuscutae Semen-Salviae Miltiorrhizae Radix et Rhizoma in the treatment of recurrent spontaneous abortion (RSA) through network pharmacology, molecular docking, and cell experiment verification. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and UniPort databases were used to screen and organize the active ingredients and corresponding targets of Cuscutae Semen-Salviae Miltiorrhizae Radix et Rhizoma. The potential therapeutic targets of RSA were screened in Online Mendelian Inheritance in Man (OMIM), GeneCards database, DrugBank database, DisGeNET database, and Therapeutic Target Database (TTD). The potential core targets of Cuscutae Semen-Salviae miltiorrhizae Radix et Rhizoma for treating RSA were further screened by constructing a protein-protein interaction (PPI) network and topological analysis. Meanwhile, the Database for Annotation, Visualization and Integrated Discovery (DAVID) was chosen to perform enrichment analysis on intersection targets. On this basis, AutoDock software was used for molecular docking, and the data were imported into PyMOL software for visualization and composition. Finally, the cell counting kit-8 (CCK-8) experiment, Transwell cell invasion assay, and Western blot were used to detect the effects of serum containing Cuscutae Semen-Salviae miltiorrhizae Radix et Rhizoma on HTR-8/SVneo cells and observe the effects on the interleukin (IL)-6/signal transducer and activator of transcription 3(STAT3) signaling pathway and related proteins. ResultsThrough network pharmacology analysis, a total of 69 active ingredients, 73 potential therapeutic targets, and 17 core targets, including IL-6, IL-10, and STAT3, were collected. The 73 common targets were enriched in 614 Gene Ontology (GO) entries and 57 Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. The molecular docking results indicated that IL-6 and STAT3 had good binding ability with the main active ingredients, including matrine, cryptotanshinone, and tanshinone ⅡA. The cell experiment results showed that, compared with those of the control group, after 24 hours of treatment with the drug-containing serum, the survival and invasion rates of HTR-8/SVneo cells were significantly increased (P<0.05), and the expression of IL-6/STAT3 signaling pathway and related proteins IL-10 and c-Myc was significantly elevated (P<0.05). Moreover, the trend of action in the drug-containing serum group was consistent with that of pathway agonists. ConclusionCuscutae Semen-Salviae miltiorrhizae Radix et Rhizoma may enhance the survival rate and invasive activity of HTR-8/SVneo cells to further prevent and treat RSA by activating the IL-6/STAT3 signaling pathway and upregulating the expression of downstream factors IL-10 and c-Myc in the pathway.
4.Long-term efficacy of CMV/EBV bivirus-specific T cells for viral co-reactivation after stem cell transplantation.
Xuying PEI ; Meng LV ; Xiaodong MO ; Yuqian SUN ; Yuhong CHEN ; Chenhua YAN ; Yuanyuan ZHANG ; Lanping XU ; Yu WANG ; Xiaohui ZHANG ; Xiaojun HUANG ; Xiangyu ZHAO
Chinese Medical Journal 2025;138(5):607-609
6.Application of salivary micro-ecosystem in early prevention and control of oral and systemic diseases.
Xiangyu SUN ; Chao YUAN ; Xinzhu ZHOU ; Jing DIAO ; Shuguo ZHENG
Journal of Peking University(Health Sciences) 2025;57(5):859-863
Saliva is an important body fluid in the oral cavity containing lots of biomarkers, whose inherent micro-ecosystem holds significant value for early diagnosis and monitoring of oral diseases. Simultaneously, saliva has particular advantages, such as ease of sampling, painless and non-invasive collection, and suitability for repeated sampling, making it highly appropriate for surveillance and follow-up of diseases. In a series of studies conducted by the research group for preventive dentistry in Peking University School and Hospital of Stomatology, we compared different segments of saliva and those samples collected via different sampling methods using proteomic/peptidomic and microbiomic technologies to explore the stability of saliva samples. Besides, the significance of applying representative salivary biomarkers in early prevention and control of representative oral diseases (e.g. dental caries, periodontal diseases) and systemic conditions (e.g. type 2 diabetes mellitus, chronic kidney disease) was confirmed as well.
Humans
;
Saliva/chemistry*
;
Dental Caries/diagnosis*
;
Biomarkers/analysis*
;
Periodontal Diseases/diagnosis*
;
Mouth Diseases/diagnosis*
;
Proteomics/methods*
;
Diabetes Mellitus, Type 2/diagnosis*
;
Microbiota
;
Renal Insufficiency, Chronic/prevention & control*
7.A novel dual-targeting strategy of nanobody-driven protein corona modulation for glioma therapy.
Yupei ZHANG ; Shugang QIN ; Tingting SONG ; Zhiying HUANG ; Zekai LV ; Yang ZHAO ; Xiangyu JIAO ; Min SUN ; Yinghan ZHANG ; Guang XIE ; Yuting CHEN ; Xuli RUAN ; Ruyue LIU ; Haixing SHI ; Chunli YANG ; Siyu ZHAO ; Zhongshan HE ; Hai HUANG ; Xiangrong SONG
Acta Pharmaceutica Sinica B 2025;15(9):4917-4931
Glioma represents the most prevalent malignant tumor of the central nervous system, with chemotherapy serving as an essential adjunctive treatment. However, most chemotherapeutic agents exhibit limited ability to penetrate the blood-brain barrier (BBB). This study introduced a novel dual-targeting strategy for glioma therapy by modulating the formation of nanobody-driven protein coronas to enhance the brain and tumor-targeting efficiency of hydrophobic cisplatin prodrug-loaded lipid nanoparticles (C8Pt-Ls). Specifically, nanobodies (Nbs) with fibrinogen-binding capabilities were conjugated to the surface of C8Pt-Ls, resulting in the generation of Nb-C8Pt-Ls. Within the bloodstream, Nb-C8Pt-Ls could bound more fibrinogen, forming the protein corona that specifically interacted with LRP-1, a receptor highly expressed on the BBB. This interaction enabled a "Hitchhiking Effect" mechanism, facilitating efficient trans-BBB transport and promoting effective brain targeting. Additionally, the protein corona interacted with LRP-1, which is also overexpressed in glioma cells, achieving precise tumor targeting. Computational simulations and SPR detection clarified the molecular interaction mechanism of the Nb-fibrinogen-(LRP-1) complex, confirming its binding specificity and stability. Our results demonstrated that this strategy significantly enhanced C8Pt accumulation in brain tissues and tumors, induced apoptosis in glioma cells, and improved therapeutic efficacy. This study provides a novel framework for glioma therapy and underscores the potential of protein corona modulation-based dual-targeting strategies in advancing treatments for brain tumors.
8.PARylation promotes acute kidney injury via RACK1 dimerization-mediated HIF-1α degradation.
Xiangyu LI ; Xiaoyu SHEN ; Xinfei MAO ; Yuqing WANG ; Yuhang DONG ; Shuai SUN ; Mengmeng ZHANG ; Jie WEI ; Jianan WANG ; Chao LI ; Minglu JI ; Xiaowei HU ; Xinyu CHEN ; Juan JIN ; Jiagen WEN ; Yujie LIU ; Mingfei WU ; Jutao YU ; Xiaoming MENG
Acta Pharmaceutica Sinica B 2025;15(9):4673-4691
Poly(ADP-ribosyl)ation (PARylation) is a specific form of post-translational modification (PTM) predominantly triggered by the activation of poly-ADP-ribose polymerase 1 (PARP1). However, the role and mechanism of PARylation in the advancement of acute kidney injury (AKI) remain undetermined. Here, we demonstrated the significant upregulation of PARP1 and its associated PARylation in murine models of AKI, consistent with renal biopsy findings in patients with AKI. This elevation in PARP1 expression might be attributed to trimethylation of histone H3 lysine 4 (H3K4me3). Furthermore, a reduction in PARylation levels mitigated renal dysfunction in the AKI mouse models. Mechanistically, liquid chromatography-mass spectrometry indicated that PARylation mainly occurred in receptor for activated C kinase 1 (RACK1), thereby facilitating its subsequent phosphorylation. Moreover, the phosphorylation of RACK1 enhanced its dimerization and accelerated the ubiquitination-mediated hypoxia inducible factor-1α (HIF-1α) degradation, thereby exacerbating kidney injury. Additionally, we identified a PARP1 proteolysis-targeting chimera (PROTAC), A19, as a PARP1 degrader that demonstrated superior protective effects against renal injury compared with PJ34, a previously identified PARP1 inhibitor. Collectively, both genetic and drug-based inhibition of PARylation mitigated kidney injury, indicating that the PARylated RACK1/HIF-1α axis could be a promising therapeutic target for AKI treatment.
9.A novel feedback loop: CELF1/circ-CELF1/BRPF3/KAT7 in cardiac fibrosis.
Yuan JIANG ; Bowen ZHANG ; Bo ZHANG ; Xinhua SONG ; Xiangyu WANG ; Wei ZENG ; Liyang ZUO ; Xinqi LIU ; Zheng DONG ; Wenzheng CHENG ; Yang QIAO ; Saidi JIN ; Dongni JI ; Xiaofei GUO ; Rong ZHANG ; Xieyang GONG ; Lihua SUN ; Lina XUAN ; Berezhnova Tatjana ALEXANDROVNA ; Xiaoxiang GUAN ; Mingyu ZHANG ; Baofeng YANG ; Chaoqian XU
Acta Pharmaceutica Sinica B 2025;15(10):5192-5211
Cardiac fibrosis is characterized by an elevated amount of extracellular matrix (ECM) within the heart. However, the persistence of cardiac fibrosis ultimately diminishes contractility and precipitates cardiac dysfunction. Circular RNAs (circRNAs) are emerging as important regulators of cardiac fibrosis. Here, we elucidate the functional role of a specific circular RNA CELF1 in cardiac fibrosis and delineate a novel feedback loop mechanism. Functionally, circ-CELF1 was involved in enhancing fibrosis-related markers' expression and promoting the proliferation of cardiac fibroblasts (CFs), thereby exacerbating cardiac fibrosis. Mechanistically, circ-CELF1 reduced the ubiquitination-degradation rate of BRPF3, leading to an elevation of BRPF3 protein levels. Additionally, BRPF3 acted as a modular scaffold for the recruitment of histone acetyltransferase KAT7 to facilitate the induction of H3K14 acetylation within the promoters of the Celf1 gene. Thus, the transcription of Celf1 was dramatically activated, thereby inhibiting the subsequent response of their downstream target gene Smad7 expression to promote cardiac fibrosis. Moreover, Celf1 further promoted Celf1 pre-mRNA transcription and back-splicing, thereby establishing a feedback loop for circ-CELF1 production. Consequently, a novel feedback loop involving CELF1/circ-CELF1/BRPF3/KAT7 was established, suggesting that circ-CELF1 may serve as a potential novel therapeutic target for cardiac fibrosis.


Result Analysis
Print
Save
E-mail