1.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
2.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
3.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
4.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
5.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
6.Research on the use of oral humidity detection device to assist in auxiliary evaluating the degree of parotid gland damage during radiotherapy for nasopharyngeal carcinoma
Renjin CHEN ; Xiangxiang SHI ; Haowen PANG
Practical Oncology Journal 2024;38(3):192-199
Objective The aim of this study was to explore the effectiveness of self-made oral humidity detection device to assist in evaluating the degree of parotid gland damage in radiotherapy for nasopharyngeal carcinoma,so as to guide doctors to change the radiotherapy plan in time,reduce the radiation dose to parotid gland,and reduce the incidence of xerostomia after radiotherapy.Methods A retrospective analysis was conducted on the relationship between oral humidity and parotid gland dose of radiotherapy in 60 patients with nasopharyngeal carcinoma using oral detection devices in the Department of Oncology of Southwest Medical University Affiliated Hospital from January 1,2022 to December 31,2022.According to the method of changing the radiotherapy plan,patients were divided into experimental group(n=30)and control group(n=30).The patients in the experimental group used a self-made oral humidity detection device to detect oral humidity,when 30 patients with oral relative humidity below 65%underwent CT simulation positioning and changed the radiotherapy plan to reduce the dose of parotid gland;The control group patients collected oral humidity but did not interfere in the radiotherapy plan,and only underwent CT positioning during the mid-term radiotherapy.The average oral humidity,parotid gland,and target area dose parameters of patients were analyzed after radiotherapy.The follow-up questionnaire was conducted to evaluate the life quality of patients in terms of dry mouth,decreased taste,difficulty opening mouth,and dental caries in two groups.Results The average oral humidity(t=2.938,P<0.05),the Dmean of average dose of bilateral parotid glands(tleft=-2.076,tright=-2.094,P<0.05),the D50 for dose of 50%volume of bilateral parotid glands(tleft=-2.123,tright=-2.230,P<0.05),and the volume percentage V30 of bilateral parotid gland dose(tleft=-2.505,tright=-2.491,P<0.05)in patients were significantly re-duced in the experimental group compared to the control group,while there was no statistically significant differences in target area do-simetric parameters(P>0.05).The dry mouth and taste loss in the experimental group were lower than those of the control group(P<0.05),and the difficulty in opening the mouth and caries scores were lower than those of the control group,but the difference was not statistically significant(P>0.05).Conclusion The oral humidity detection device can detect the oral humidity of radiotherapy pa-tients in time,objectively evaluate the impact of radiation on patient's parotid gland,guide doctors to change the radiotherapy treatment plan in a timely manner,minimize the degree of parotid gland damage,and improve their quality of life in nasopharyngeal carcinoma radiotherapy patients.At the same time,the device is easy to operate,time-consuming,and non-invasive,which improves the effec-tiveness and safety of radiotherapy technology and is worth promoting this device.
7.Relationship between hippocampal miR-3065-5p and IGF-1/PI3K/Akt signaling pathway in a mouse model of perioperative neurocognitive disorder
Feng JIANG ; Jingbo SUN ; Bingqi WANG ; Xiangxiang ZHANG ; Huijie ZHU ; Huailong CHEN ; Gaofeng ZHANG ; Fei SHI ; Mingshan WANG ; Yang YUAN
Chinese Journal of Anesthesiology 2023;43(2):170-175
Objective:To evaluate the relationship between hippocampal miR-3065-5p and insulin-like growth factor-1/phosphatidylinositol 3-kinase/protein kinase B(IGF-1/PI3K/Akt)signaling pathway in a mouse model of perioperative neurocognitive disorder (PND).Methods:Eighty clean-grade healthy male C75BL/6 mice, aged 12-14 weeks, weighing 20-30 g, were divided them into 4 groups ( n=20 each) using the random number table method: control group (C group), PND group, miR-3065-5p agonist group (Ag group) and miR-3065-5p agonist negative control group (Ag-NC group). PND model was prepared by internal fixation of tibial fracture under anesthesia with 1.5% isoflurane. Two days before developing the model, miR-3065-5p agomir 2 μl was injected into the lateral ventricle in Ag group, miR-3065-5p agomir negative control 2 μl was injected into the lateral ventricle in Ag-NC group. Morris water maze test and open field test were performed at 7 days after surgery. The mice were sacrificed after the end of test, and hippocampal tissues were obtained for determination of the expression of miR-3065-5p, IGF-1 mRNA and Bcl-2 mRNA (by quantitative real-time polymerase chain reaction) and expression of IGF-1, phosphorylated Akt (p-Akt), phosphorylated glycogen synthase kinase-3β (p-GSK3β) and Bcl-2 (by Western blot). Results:There was no significant difference in each parameter in the open field test among the four groups ( P>0.05). Compared with group C, the postoperative escape latency was significantly prolonged, the percentage of time of stay at the target quadrant was decreased, the number of crossing the original platform was reduced, the expression of miR-3065-5p was up-regulated, and the expression of IGF-1 mRNA, Bcl-2 mRNA, IGF-1, p-Akt, p-GSK3β and Bcl-2 was down-regulated in the other three groups ( P<0.05). Compared with PND group and Ag-NC group, the postoperative escape latency was significantly prolonged, the percentage of time of stay at the target quadrant was decreased, the number of crossing the original platform was reduced, the expression of miR-3065-5p was up-regulated, and the expression of IGF-1 mRNA, Bcl-2 mRNA, IGF-1, p-Akt, p-GSK3β and Bcl-2 was down-regulated in Ag group ( P<0.05). Conclusions:Up-regulation of miR-3065-5p can inhibit the activation of IGF-1/PI3K/Akt signaling pathway, which might be one of the mechanisms of PND developed in mice.
8.Effects of mild hypothermia on microglia polarization and JAK2/STAT3 signaling pathway during cerebral ischemia-reperfusion in rats
Xiangxiang ZHANG ; Huailong CHEN ; Mingshan WANG ; Jiawen ZHANG ; Huijie ZHU ; Haofei LIU ; Yang YUAN ; Fei SHI ; Gaofeng ZHANG
Chinese Journal of Anesthesiology 2023;43(4):468-472
Objective:To investigate the effects of mild hypothermia on microglia polarization and janus kinase 2/signal transduction and transcriptional activation factor 3 (JAK2/STAT3) signaling pathway during cerebral ischemia-reperfusion (I/R) in rats.Methods:Forty-five clean-grade healthy male Sprague-Dawley rats, aged 8 weeks, weighing 260-280 g, were divided into 3 groups ( n=15 each) by the random number table method: sham operation group (S group), cerebral I/R group (I/R) and mild hypothermia group (H group). In I/R group and H group, cerebral I/R was induced by middle cerebral artery occlusion using a nylon thread in anesthetized animals, the nylon thread was removed to restore the perfusion after 2 h of occlusion, and the rectal temperature was maintained at 36-37 ℃ during the period. Group H was wiped with 75% alcohol for 3 h starting from the time point immediately after reperfusion, and the rectal temperature was maintained at 32-33℃. Modified neurological severity score (mNSS) was evaluated at 24 h of reperfusion. Animals were then sacrificed for determination of the cerebral infarct size (using TTC staining), expression of M1 marker inducible nitric oxide synthase (iNOS), M2 marker arginase 1(Arg-1), phosphorylated JAK2(p-JAK2)and phosphorylated STAT3(p-STAT3)(by Western blot), expression of iNOS mRNA and Arg-1 mRNA (by quantitative polymerase chain reaction), and contents of interleukin-6 (IL-6) and IL-10 (by enzyme-linked immunosorbent assay). Results:Compared with group S, mNSS and cerebral infarct size were significantly increased, the expression of iNOS, Arg-1 protein and mRNA in cerebral ischemic penumbral zone was up-regulated, and the p-JAK2/JAK2 ratio, p-STAT3/STAT3 ratio, and contents of IL-6 and IL-10 were increased in the other two groups ( P<0.05). Compared with I/R group, mNSS and cerebral infarct size were significantly decreased, the expression of iNOS protein and mRNA in cerebral ischemic penumbral zone was down-regulated, the expression of Arg-1 and mRNA was up-regulated, and the p-JAK2/JAK2 ratio, p-STAT3/STAT3 ratio and IL-6 content were decreased, and the IL-10 content was increased in group H ( P<0.05). Conclusions:Mild hypothermia can promote the polarization shift of microglia from M1 to M2 phenotype during cerebral I/R and inhibit the central inflammatory responses, and the mechanism may be related to inhibition of JAK2/STAT3 signaling pathway in rats.
9.Effect of selective cerebral mild hypothermia on SUMO2/3 modification of Drp1 in a rat model of cerebral ischemia-reperfusion
Haofei LIU ; Yang LIU ; Xiangxiang ZHANG ; Ruijiao NIU ; Mingshan WANG ; Fei SHI ; Yang YUAN ; Gaofeng ZHANG ; Rui DONG
Chinese Journal of Anesthesiology 2023;43(5):591-596
Objective:To evaluate the effect of selective cerebral mild hypothermia on small ubiquitin-like modifier 2/3 (SUMO2/3) modification of dynamin-related protein 1 (Drp1) in a rat model of cerebral ischemia-reperfusion (I/R).Methods:Sixty clean-grade healthy male Sprague-Dawley rats, aged 6-8 weeks, weighing 240-260 g, were divided into 4 groups ( n=15 each) using a random number table method: sham operation group (S group), cerebral I/R group (I/R group), selective cerebral mild hypothermia group (HT group) and normal temperature group (NT group). The operation was performed under the monitoring of cerebral temperature and rectal temperature.Only the cervical blood vessels were exposed in S group, while focal cerebral I/R was induced by 2 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion in anesthetized animals in the other three groups.In HT group and NT group, 4 and 37 ℃ normal saline was perfused through the left internal carotid artery at a rate of 80 ml·kg -1·h -1 for 15 min, respectively. Modified neurological severity score (mNSS) was assessed at 24 h of reperfusion. Then the rats were sacrificed under deep anesthesia, brains were removed, brain tissues were obtained for determination of the percentage of cerebral infarct size (by TTC staining), and the ischemic penumbra tissues in the cerebral cortex were removed for examination of the ultra-structural changes of mitochondria (with a transmission electron microscope) and for determination of the SUMO2/3 modification of Drp1 (by CO-IP), expression of total Drp1 (T-Drp1) and total cytochrome c (T-Cytc) (by Western blot), and expression of mitochondrial outer membrane Drp1 (M-Drp1) and cytoplasmic Cytc (C-Cytc) (by Western blot) after isolation of mitochondria and cytoplasm. Results:Compared with S group, the mNSS and percentage of cerebral infarct size were significantly increased, the expression of M-Drp1, T-Drp1, C-Cytc and T-Cytc was up-regulated, and SUMO2/3 modification of Drp1 in ischemic penumbra area was increased ( P<0.05), the fragmentation of mitochondria was aggravated, and cristae rupture and vacuolation were obvious in the other three groups. Compared with I/R group, the mNSS and percentage of cerebral infarct size were significantly decreased, the expression of M-Drp1, T-Drp1, C-Cytc and T-Cytc was down-regulated, SUMO2/3 modification of Drp1 was increased ( P<0.05), the fragmentation of mitochondria was significantly attenuated, and cristae rupture and vacuolation were weakened in HT group. There were no significant differences in these detection parameters between NT group and I/R group ( P>0.05). Conclusions:The mechanism by which selective cerebral mild hypothermia alleviates the cerebral I/R injury is related to increased SUMO2/3 modification of Drp1, decreased binding of Drp1 to mitochondrial outer membrane, and reduced mitochondrial excessive fission in rats.
10.Effect of sodium bicarbonate Ringer′s solution on acute kidney injury following laparoscopic hepatectomy in elderly patients
Hui YU ; Xi LIU ; Gaofeng ZHANG ; Xiangxiang ZHANG ; Haofei LIU ; Mingshan WANG ; Fei SHI ; Yang YUAN
Chinese Journal of Anesthesiology 2023;43(6):714-719
Objective:To evaluate the effect of sodium bicarbonate Ringer′s solution on acute kidney injury(AKI) following laparoscopic hepatectomy in elderly patients.Methods:A total of 362 American Society of Anesthesiologists Physical Status classification Ⅱ or Ⅲ elderly patients, aged 65-79 yr, with body mass index of 18-28 kg/m 2, scheduled for elective laparoscopic hepatectomy, were divided into 2 groups( n=181 each) using a random number table method: bicarbonate Ringer′s solution group(BR group) and lactated Ringer′s solution group(LR group). Bicarbonate Ringer′s solution and lactated Ringer′s solution were intravenously infused in BR group and LR group, respectively. All operations were performed under general anesthesia combined with abdominal fascia block, and the methods of controlled low central venous pressure and intermittent hepatic inflow occlusion were applied to reduce intraoperative bleeding. Radial artery blood samples were collected for blood gas analysis at 5 min before anesthesia induction(T 0), 20 min after occluding liver hilus(T 1), 10 min after hepatectomy and hemostasis(T 2), at the end of surgery(T 3) and at postanesthesia care unit discharge(T 4), and lactate value(Lac) was recorded. Blood samples from cubital vein were collected on admission to hospital(T A) and at 24(T 24) and 48 h after operation(T 48) for determination of serum creatinine(Cr) concentrations. Doppler-based renal resistive index(RRI) was measured at T A, T 4, T 24 and T 48. The incidence of AKI was calculated within 48 h after operation according to the Kidney Disease: Improving Global Outcomes criteria in 2012 for Cr concentration. Adverse reactions(such as nausea and vomiting) and complications(such as incision infection) within 48 h after operation were recorded. Results:Compared with the baseline at T 0, Lac concentrations were significantly increased at T 1-4 in both groups( P<0.01). Cr concentrations were significantly increased at T 24 and T 48, and RRI was increased at T 4, T 24 and T 48 than at T A in both groups( P<0.01). Compared with group LR, the incidence of AKI within 48 h after operation, Lac concentrations at T 3, 4, Cr concentrations at T 24 and T 48, and RRI at T 4, T 24 and T 48 were significantly decreased in group BR( P<0.05 or 0.01). There was no significant difference in the incidence of nausea, vomiting, incision infection, delirium, bile leakage and pulmonary infection within 48 h after operation among the two groups( P>0.05). Conclusions:Sodium bicarbonate Ringer′s solution can decrease the development of AKI following laparoscopic hepatectomy in elderly patients.

Result Analysis
Print
Save
E-mail