1.Pathological changes in the total knee joint during spontaneous knee osteoarthritis in guinea pigs at different months of age
Xiaoshen HU ; Huijing LI ; Junling LYU ; Xianjun XIAO ; Juan LI ; Xiang LI ; Ling LIU ; Rongjiang JIN
Chinese Journal of Tissue Engineering Research 2025;29(11):2218-2224
BACKGROUND:The guinea pig is considered to be the most useful spontaneous model for evaluating primary osteoarthritis in humans because of its similar knee joint structure and close histopathologic features to those of humans. OBJECTIVE:To investigate the pathological process of spontaneous knee osteoarthritis in guinea pigs by analyzing the histopathology of the total knee joint of guinea pigs aged 1 to 18 months. METHODS:Eight healthy female Hartley guinea pigs in each age group of 1,6,10,14,16,and 18 months old were selected.The quadriceps femoris was taken for hematoxylin-eosin staining,and the total knee joint was stained with hematoxylin-eosin and toluidine blue.The histopathology of the cartilage,subchondral bone,synovium,meniscus,and muscles were observed under light microscope.Mankin's score and synovitis score were compared,and the correlation analysis was conducted. RESULTS AND CONCLUSION:As the guinea pig age increased,the Mankin's score increased(P<0.05),and the pathological score of synovitis also gradually increased(P<0.05),and there was a significant positive correlation between the two(r=0.641,P<0.001).The incidence rate of subchondral bone marrow lesion in 18-month-old guinea pigs was 50%,and the incidence of meniscus injury was 37.5%.In addition,osteophyte and narrowing of the joint space were observed,and only a few guinea pigs had inflammation in the quadriceps femoris.To conclude,guinea pigs develop significant cartilage defects,synovial inflammation,subchondral bone lesions,meniscus injury,osteophyte formation,and joint space narrowing as they age,all of which are similar to the pathological processes of primary knee osteoarthritis in humans,making it an ideal model of spontaneous knee osteoarthritis.
2.Traditional Chinese Medicine Regulates Metabolic Reprogramming to Treat Lung Cancer: A Review
Xiaoli WEN ; Fangyan CAI ; Ling LIU ; Si SHAN ; Xiang ZHANG ; Hongning LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):269-279
Lung cancer has the highest morbidity and mortality rate among all cancers. Because of the complex pathogenesis, there are limitations in the common Western medicine treatment methods. Clinical and experimental studies have proved that traditional Chinese medicine (TCM) can not only effectively treat lung cancer and alleviate the clinical symptoms of cancer patients but also reduce the adverse reactions and complications caused by surgery, chemotherapy, and radiotherapy to improve the quality of life of the patients. The biological behaviors of lung cancer cells, such as proliferation, invasion, and metastasis, are closely related to their metabolic reprogramming. Metabolic reprogramming in lung cancer involves a series of metabolic changes such as increased glucose uptake and consumption, enhanced glycolysis, increased amino acid uptake and catabolism, and enhanced lipid and protein synthesis. Studies have reported that TCM active components, extracts, and compound prescriptions can effectively inhibit the biological behaviors of lung cancer by regulating metabolic reprogramming. Therefore, this paper reviews the pharmacological mechanisms of TCM active components, extracts, and compound prescriptions in regulating metabolic reprogramming of lung cancer, with the aim of providing a new way of thinking for the treatment of lung cancer by TCM regulation of metabolic reprogramming of lung cancer cells. The available studies suggest that TCM mainly inhibits the extracellular signal-regulated protein kinase (ERK)/c-Myc, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-α (HIF-1α) pathways. Furthermore, the expression of monocarboxylate transporter 4 (MCT4), glucose transporter 1 (GLUT1), pyruvate dehydrogenase (PDH), phosphofructokinase 1 (PFK1), pyruvate dehydrogenase kinase 1 (PDK1), pyruvate kinase M2 (PKM2), hexokinase (HK), lactate dehydrogenase (LDH), and lactate dehydrogenase A (LDHA) are inhibited. In this way, TCM inhibits the glucose uptake by lung cancer cells and glycolysis in lung cancer cells to reduce the energy metabolism of tumor cells, ultimately achieving the therapeutic effect on lung cancer.
3.Concordance and pathogenicity of copy number variants detected by non-invasive prenatal screening in 38,611 pregnant women without fetal structural abnormalities.
Yunyun LIU ; Jing WANG ; Ling WANG ; Lin CHEN ; Dan XIE ; Li WANG ; Sha LIU ; Jianlong LIU ; Ting BAI ; Xiaosha JING ; Cechuan DENG ; Tianyu XIA ; Jing CHENG ; Lingling XING ; Xiang WEI ; Yuan LUO ; Quanfang ZHOU ; Ling LIU ; Qian ZHU ; Hongqian LIU
Chinese Medical Journal 2025;138(4):499-501
4.Identification and expression analysis of AP2/ERF family members in Lonicera macranthoides.
Si-Min ZHOU ; Mei-Ling QU ; Juan ZENG ; Jia-Wei HE ; Jing-Yu ZHANG ; Zhi-Hui WANG ; Qiao-Zhen TONG ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2025;50(15):4248-4262
The AP2/ERF transcription factor family is a class of transcription factors widely present in plants, playing a crucial role in regulating flowering, flower development, flower opening, and flower senescence. Based on transcriptome data from flower, leaf, and stem samples of two Lonicera macranthoides varieties, 117 L. macranthoides AP2/ERF family members were identified, including 14 AP2 subfamily members, 61 ERF subfamily members, 40 DREB subfamily members, and 2 RAV subfamily members. Bioinformatics and differential gene expression analyses were performed using NCBI, ExPASy, SOMPA, and other platforms, and the expression patterns of L. macranthoides AP2/ERF transcription factors were validated via qRT-PCR. The results indicated that the 117 LmAP2/ERF members exhibited both similarities and variations in protein physicochemical properties, AP2 domains, family evolution, and protein functions. Differential gene expression analysis revealed that AP2/ERF transcription factors were primarily differentially expressed in the flowers of the two L. macranthoides varieties, with the differentially expressed genes mainly belonging to the ERF and DREB subfamilies. Further analysis identified three AP2 subfamily genes and two ERF subfamily genes as potential regulators of flower development, two ERF subfamily genes involved in flower opening, and two ERF subfamily genes along with one DREB subfamily gene involved in flower senescence. Based on family evolution and expression analyses, it is speculated that AP2/ERF transcription factors can regulate flower development, opening, and senescence in L. macranthoides, with ERF subfamily genes potentially serving as key regulators of flowering duration. These findings provide a theoretical foundation for further research into the specific functions of the AP2/ERF transcription factor family in L. macranthoides and offer important theoretical insights into the molecular mechanisms underlying floral phenotypic differences among its varieties.
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Transcription Factors/chemistry*
;
Lonicera/classification*
;
Flowers/metabolism*
;
Phylogeny
;
Gene Expression Profiling
;
Multigene Family
5.Intramedullary administration of tranexamic acid reduces bleeding in proximal femoral nail antirotation surgery for intertrochanteric fractures in elderly individuals: A randomized controlled trial.
Xiang-Ping LUO ; Jian PENG ; Ling ZHOU ; Hao LIAO ; Xiao-Chun JIANG ; Xiong TANG ; Dun TANG ; Chao LIU ; Jian-Hui LIU
Chinese Journal of Traumatology 2025;28(3):201-207
PURPOSE:
Intertrochanteric fractures undergoing proximal femoral nail antirotation (PFNA) surgery are associated with significant hidden blood loss. This study aimed to explore whether intramedullary administration of tranexamic acid (TXA) can reduce bleeding in PFNA surgery for intertrochanteric fractures in elderly individuals.
METHODS:
A randomized controlled trial was conducted from January 2019 to December 2022. Patients aged over 60 years with intertrochanteric fractures who underwent intramedullary fixation surgery with PFNA were eligible for inclusion and grouped according to random numbers. A total of 249 patients were initially enrolled, of which 83 were randomly allocated to the TXA group and 82 were allocated to the saline group. The TXA group received intramedullary perfusion of TXA after the bone marrow was reamed. The primary outcomes were total peri-operative blood loss and post-operative transfusion rate. The occurrence of adverse events was also recorded. Continuous data was analyzed by unpaired t-test or Mann-Whitney U test, and categorical data was analyzed by Pearson Chi-square test.
RESULTS:
The total peri-operative blood loss (mL) in the TXA group was significantly lower than that in the saline group (577.23 ± 358.02 vs. 716.89 ± 420.30, p = 0.031). The post-operative transfusion rate was 30.67% in the TXA group and 47.95% in the saline group (p = 0.031). The extent of post-operative deep venous thrombosis and the 3-month mortality rate were similar between the 2 groups.
CONCLUSION
We observed that intramedullary administration of TXA in PFNA surgery for intertrochanteric fractures in elderly individuals resulted in less peri-operative blood loss and decreased transfusion rate, without any adverse effects, and is, thus, recommended.
Humans
;
Tranexamic Acid/administration & dosage*
;
Hip Fractures/surgery*
;
Male
;
Aged
;
Female
;
Fracture Fixation, Intramedullary/adverse effects*
;
Blood Loss, Surgical/prevention & control*
;
Antifibrinolytic Agents/administration & dosage*
;
Aged, 80 and over
;
Bone Nails
;
Middle Aged
;
Blood Transfusion/statistics & numerical data*
6.A Screening Study of GP.Mur Antigen in Blood Donors in Jiangsu Region.
Lei SHAO ; Tai-Xiang LIU ; Ling MA ; Fang ZHAO ; Ruo-Yang ZHANG ; Hong LIN
Journal of Experimental Hematology 2025;33(4):1150-1154
OBJECTIVE:
To investigate the distribution of GP.Mur antigen in blood donors in Jiangsu Province.
METHODS:
Genomic DNA was extracted from 1 114 blood donors in Jiangsu region. PCR-SSP was performed to amplify GP.Mur, and gene analysis was conducted by direct sequencing of the PCR products. The frequency of GP.Mur in the blood donor population of Jiangsu region was calculated.
RESULTS:
Out of 1 114 randomly selected blood samples, 11 positive bands were detected during amplification. Direct sequencing analysis revealed that among the 11 positive samples, 4 were homozygous for GYP .Mur genotype, 3 were heterozygous for GYP .Mur genotype, and the remaining 4 samples were identified as GYP .HF genotype.
CONCLUSION
This study analyzed the distribution of the GP.Mur antigen and preliminary obtained the frequency data in the blood donor population in Jiangsu region. Further in-depth research on this blood group is of great importance in guiding clinical blood transfusion practices and ensuring transfusion safety.
Humans
;
Blood Donors
;
China
;
Genotype
;
Blood Group Antigens/genetics*
;
Polymerase Chain Reaction
;
Glycophorins/genetics*
;
Gene Frequency
7.Application of Third-Generation Sequencing Technology in RHD Genotyping of a Chinese Pedigree with Weak D Phenotype.
Ling MA ; Tai-Xiang LIU ; Li-Li SHI ; Chen-Chen FENG ; Ruo-Yang ZHANG ; Fang ZHAO
Journal of Experimental Hematology 2025;33(4):1199-1202
OBJECTIVE:
To investigate the molecular mechanism of weak D phenotype in a Chinese family.
METHODS:
Routine Rh typing tests were performed first, and RHD exons 1-10 of the proband and his family members were sequenced by first-generation sequencing. RHD zygosity was also determined. Third-generation sequencing was used to analyze the haplotypes of the RHD gene.
RESULTS:
The proband showed a weak D serological phenotype. First-generation sequencing revealed a c.787G>A point mutation in exon 5. The family pedigree investigation showed that the proband and his younger sister had the same serological phenotype and molecular mechanism. His father carried this gene mutation, while his mother and younger brother were normal. Hybrid box was not detected, suggesting that all the family members did not have a haplotype with a complete deletion of the RHD gene. The results of third-generation sequencing showed that the proband and his sister inherited the weak D allele from their father and the non-functional allele RHD -CE(3-9)-D from their mother, respectively.
CONCLUSION
Third-generation sequencing technology enables haplotype analysis of the RHD gene and can detect complex genotypes such as genetic exchanges between RHD and RHCE combined with other mutations.
Female
;
Humans
;
Male
;
Alleles
;
Exons
;
Genotype
;
Haplotypes
;
High-Throughput Nucleotide Sequencing
;
Pedigree
;
Phenotype
;
Rh-Hr Blood-Group System/genetics*
;
East Asian People/genetics*
8.Erratum: Author Correction: Targeting of AUF1 to vascular endothelial cells as a novel anti-aging therapy.
Jian HE ; Ya-Feng JIANG ; Liu LIANG ; Du-Jin WANG ; Wen-Xin WEI ; Pan-Pan JI ; Yao-Chan HUANG ; Hui SONG ; Xiao-Ling LU ; Yong-Xiang ZHAO
Journal of Geriatric Cardiology 2025;22(9):834-834
[This corrects the article DOI: 10.11909/j.issn.1671-5411.2017.08.005.].
9.Qishen Granules Modulate Metabolism Flexibility Against Myocardial Infarction via HIF-1 α-Dependent Mechanisms in Rats.
Xiao-Qian SUN ; Xuan LI ; Yan-Qin LI ; Xiang-Yu LU ; Xiang-Ning LIU ; Ling-Wen CUI ; Gang WANG ; Man ZHANG ; Chun LI ; Wei WANG
Chinese journal of integrative medicine 2025;31(3):215-227
OBJECTIVE:
To assess the cardioprotective effect and impact of Qishen Granules (QSG) on different ischemic areas of the myocardium in heart failure (HF) rats by evaluating its metabolic pattern, substrate utilization, and mechanistic modulation.
METHODS:
In vivo, echocardiography and histology were used to assess rat cardiac function; positron emission tomography was performed to assess the abundance of glucose metabolism in the ischemic border and remote areas of the heart; fatty acid metabolism and ATP production levels were assessed by hematologic and biochemical analyses. The above experiments evaluated the cardioprotective effect of QSG on left anterior descending ligation-induced HF in rats and the mode of energy metabolism modulation. In vitro, a hypoxia-induced H9C2 model was established, mitochondrial damage was evaluated by flow cytometry, and nuclear translocation of hypoxia-inducible factor-1 α (HIF-1 α) was observed by immunofluorescence to assess the mechanism of energy metabolism regulation by QSG in hypoxic and normoxia conditions.
RESULTS:
QSG regulated the pattern of glucose and fatty acid metabolism in the border and remote areas of the heart via the HIF-1 α pathway, and improved cardiac function in HF rats. Specifically, QSG promoted HIF-1 α expression and entry into the nucleus at high levels of hypoxia (P<0.05), thereby promoting increased compensatory glucose metabolism; while reducing nuclear accumulation of HIF-1 α at relatively low levels of hypoxia (P<0.05), promoting the increased lipid metabolism.
CONCLUSIONS
QSG regulates the protein stability of HIF-1 α, thereby coordinating energy supply balance between the ischemic border and remote areas of the myocardium. This alleviates the energy metabolism disorder caused by ischemic injury.
Animals
;
Myocardial Infarction/physiopathology*
;
Male
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Rats, Sprague-Dawley
;
Glucose/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Energy Metabolism/drug effects*
;
Rats
;
Fatty Acids/metabolism*
;
Myocardium/pathology*

Result Analysis
Print
Save
E-mail