1.Chinese Materia Medica by Regulating Nrf2 Signaling Pathway in Prevention and Treatment of Ulcerative Colitis: A Review
Yasheng DENG ; Lanhua XI ; Yanping FAN ; Wenyue LI ; Tianwei LIANG ; Hui HUANG ; Shan LI ; Xian HUANG ; Chun YAO ; Guochu HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):321-330
Ulcerative colitis(UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulceration of the colonic mucosa and submucosa, and its complex pathogenesis involves immune abnormality, oxidative stress and other factors. The nuclear transcription factor E2-related factor 2(Nrf2), encoded by the Nfe212 gene, plays a central role in antioxidant responses. It not only activates various antioxidant response elements such as heme oxygenase-1(HO-1) and quinone oxidoreductase 1(NQO1), but also enhances the activity of glutathione-S-transferase(GST) and superoxide dismutase 1(SOD1), effectively eliminating reactive oxygen species(ROS) accumulated in the body, and mitigating oxidative stress-induced damage to intestinal mucosa. In addition, Nrf2 can reduce the release of inflammatory factors and infiltration of immune cells by regulating immune response, cell apoptosis and autophagy pathways, thereby alleviating intestinal inflammation and promoting the repair and regeneration of damaged mucosa. Based on this, this paper reviews the research progress of Chinese materia medica in the prevention and treatment of UC by modulating the Nrf2 signaling pathway. It deeply explores the physiological role of Nrf2, the molecular mechanism of activation, the protective effect in the pathological process of UC, and how active ingredients in Chinese materia medica regulate the Nrf2 signaling pathway through multiple pathways to exert their potential mechanisms. These studies have revealed in depth that Chinese materia medica can effectively combat oxidative stress by regulating the Nrf2 signaling pathway. It can also play a role in anti-inflammatory, promoting autophagy, inhibiting apoptosis, protecting the intestinal mucosal barrier, and promoting intestinal mucosal repair, providing new ideas and methods for the multi-faceted treatment of UC.
2.Survival differences between endoscopic treatment and surgical treatment for patients with T1-2N0M0 duodenal neuroendocrine tumor
Bin BAI ; Xian SU ; Haibei XIN ; Minfeng ZHANG ; Hua XIAO ; Hui CAI
Chinese Journal of Clinical Medicine 2025;32(1):108-113
Objective To compare the long-term survival outcomes of patients with T1-2N0M0 duodenal neuroendocrine tumor (DNET) after endoscopic resection (ER) or surgical resection (SR). Methods Patients diagnosed with T1-2N0M0 DNET between January 1, 2004, and December 31, 2015, were extracted from the SEER database. Kaplan-Meier survival curve and log-rank test were used to compare overall survival (OS) rate and cancer-specific survival (CSS) rate between patients undergoing ER or SR. Propensity score matching (PSM) was used to reduce grouping differences, and multivariate Cox regression was used to analyze factors affecting OS and CSS before and after PSM. Results A total of 656 patients were included, with 457 in ER group and 199 in SR group. Before PSM, there was no significant difference in the 5-year OS rate between the ER and SR groups (88.9% vs 89.6%), but there was a significant difference in the 5-year CSS rate (99.3% vs 96.9%, P=0.017). Before PSM, multivariate Cox regression analysis showed advanced age was an independent risk factor for decreased OS (P<0.001). After PSM, there was no significant difference between the ER group (n=187) and SR group (n=187) in 5-year OS rate (90.2% vs 88.9%) or CSS rate (98.9% vs 96.7%). After PSM, multivariate Cox regression also showed advanced age was an independent risk factor for decreased OS, while resection method was not an independent factor for OS or CSS. Conclusions There is no significant difference in OS or CSS after endoscopic treatment and surgical treatments for patients with T1-2N0M0 DNET, and advanced age is an independent factor for OS.
3.Research progress on strategies to target intestinal microbiota to improve drug resistance in tumor immunotherapy
Hui-ling LI ; Bi-qing LIU ; Ying-nan FENG ; Xin HU ; Lan ZHANG ; Xian-zhe DONG
Acta Pharmaceutica Sinica 2025;60(2):260-268
A growing body of research points out that gut microbiota plays a key role in tumor immunotherapy. By optimizing the composition of intestinal microbiota, it is possible to effectively improve immunotherapy resistance and enhance its therapeutic effect. This article comprehensively analyzes the mechanism of intestinal microbiota influencing tumor immunotherapy resistance, expounds the current strategies for targeted regulation of intestinal microbiota, such as traditional Chinese medicine and plant components, fecal microbiota transplantation, probiotics, prebiotics and dietary therapy, and explores the potential mechanisms of these strategies to improve patients' resistance to tumor immunotherapy. At the same time, the article also briefly discusses the prospects and challenges of targeting intestinal microbiota to improve tumor immunotherapy resistance, which provides a reference for related research to help the strategy research of reversing tumor immunotherapy resistance.
4.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
5.Bioequivalence and pharmacokinetic study of olmesartan medoxomil and hydrochlorothiazide tablets in Chinese healthy subjects
Qi-Qi ZHANG ; Xian-Gen XU ; Jin-Fang LOU ; Bo-Fan SONG ; Chun-Guang YANG ; Guang-Hui ZHU ; Ting LI
The Chinese Journal of Clinical Pharmacology 2024;40(11):1623-1627
Objective To study the bioequivalence and safety of two olmesartan medoxomil and hydrochlorothiazide tablets in Chinese healthy subjects.Methods A total of 24 healthy subjects underwent fasting and postprandial tests in a single-center,randomized,open-label,single-dose,two-formulation,two-sequence,two-period,self-cross-over controlled design.The subjects were administered a single oral dose of the test formulation and reference formulation(each containingolmesartan medoxomil 20 mg and hydrochlorothiazide 12.5 mg)in a random cross-over fashion.The plasma concentrations of olmesartan and hydrochlorothiazide were determined by LC-MS/MS.The non-compartmental model analysis of olmesartan and hydrochlorothiazide was conducted using WinNonlin 7.0 software to calculate pharmacokinetic parameters and assess bioequivalence.Results In the fasting test,the pharmacokinetic parameters of olmesartan of test and reference were as follows:Cmax were(798.35±206.78)and(664.52±168.25)ng·mL-1,AUC0-t were(4 430.71±1 294.87)and(3 976.67±1 083.54)h·ng·mL-1,AUC0-∞ were(4 551.67±1 303.06)and(4 090.37±1 103.97)h·ng·mL-1.The pharmacokinetic parameters of hydrochlorothiazide of test and reference were as follows:Cmax were(92.39±35.96)and(96.15±38.76)ng·mL-1,AUC0_t were(548.69±217.11)and(564.41±208.68)h·ng·mL-1,AUC0-∞ were(603.04±228.59)and(619.26±223.27)h·ng·mL-1.In the fed test,the pharmacokinetic parameters of olmesartan of T and R were as follows:Cmax were(583.15±149.48)and(550.57±104.76)ng·mL-1,AUC0-t were(3 585.18±952.72)and(3 292.19±904.58)h·ng·mL-1,AUC0-∞ were(3 696.05±996.55)and(3 396.30±923.41)h·ng·mL-1.The pharmacokinetic parameters of hydrochlorothiazide of test and reference were as follows:Cmax were(70.30±17.88)and(74.70±21.65)ng·mL-1,AUC0-t were(476.60±119.39)and(492.91±144.81)h·ng·mL-1,AUC0-∞ were(523.37±132.67)and(535.81±151.92)h·ng·mL-1.In fasting and fed condition,the 90%confidence interval(90%CI)of Cmax,AUC0-t and AUC0-∞ of olmesartan and hydrochlorothiazide were in 80.00%-125.00%.Conclusion The two olmesartan medoxomil and hydrochlorothiazide tablets were bioequivalent under fasting and fed conditions,and good security.
6.Career development of targeted admission medical students:A seven-year follow-up analysis based on four medical colleges
Hao-Qing TANG ; Hui-Xian ZHENG ; Bai-Song ZHANG ; Ming-Yue LI ; Xiao-Yun LIU
Chinese Journal of Health Policy 2024;17(1):43-50
Objective:Utilizing a seven-year panel data set of a targeted admission medical student cohort,this study aims to examine their career development and provide insights for retaining healthcare talent in township health centers and village clinics in the central and western rural areas of China.Method:Starting from 2015,cohorts of targeted and general clinical graduates from four medical colleges in central and western China were selected and tracked for their career progression.Results:The targeted graduates'standardized residency training and medical licensing examination pass rates were similar to those of general clinical graduates.They advanced more quickly in professional titles and positions,with 82.5%becoming attending physicians and 16.2%obtaining positions in the seventh year after graduation.However,their monthly income was significantly lower than that of general clinical graduates,and this income discrepancy expanded annually.As of December 2022,among the 493 targeted graduates who completed their contracts,38.5%stayed in grassroots positions.Of those who left,60%moved to county-level or higher public hospitals,7.9%pursued further studies,and 27.7%were unemployed.Conclusion:Targeted graduates are well-trained and advance rapidly in their careers,but their lower income significantly impacts their willingness to remain at the grassroots level.After completing their service period,about one-third of the targeted graduates choose to stay in grassroots positions.
7.Research Advance on Smartphone-based Visual Biosensor in Point-of-Care Testing
Xian-Xin XIANG ; Hua-Yue SUN ; Hui-Ning CHAI ; Kun YU ; Li-Jun QU ; Guang-Yao ZHANG ; Xue-Ji ZHANG
Chinese Journal of Analytical Chemistry 2024;52(2):145-156
Human physiological indicators have become an important standard for assessing health in modern society.Traditional detection methods often require a separate laboratory,complex operation process and long detection time,so it is urgent to develop portable,fast and accurate on-site detection technologies for bioanalysis.Point-of-care testing(POCT),which differs from traditional laboratory testing,can realize the rapid in situ detection of biomarkers without the complicated analytical process of the laboratory.Smartphones,which are an essential tool in our daily life,not only have independent operating systems and built-in storage functions,but also have high-definition cameras,which have great application potential in POCT visualization.The combination of various biosensing technologies and smartphones has developed into a new direction in the field of POCT.This review mainly introduced the research progress of smartphone-based visual biosensors in POCT in recent years,including colorimetric sensors,fluorescence sensors,chemiluminescence sensors and electrochemiluminescence sensors.Finally,the problems faced by smart-phone-based visual biosensors in the application of POCT were summarized,and their future development was prospected.
8.Direct Determination of 23 Kinds of Per-and Polyfluoroalkyl Substances in Crude Plant Extracts by Liquid Chromatography-Tandem Mass Spectrometry Coupled with Online Solid Phase Extraction
Nan SHEN ; Tong-Zhu HAN ; Can-Can SHENG ; Xiu-Ping HE ; Jun-Hui CHEN ; Chen-Guang LIU ; Xian-Guo LI
Chinese Journal of Analytical Chemistry 2024;52(2):286-295,后插1-后插5
A new method for simultaneous determination of 23 kinds of per-and polyfluoroalkyl substances(PFASs)(13 kinds of perfluoro carboxylic acids,4 kinds of perfluoro sulfonic acids,and 6 kinds of new substitutes)in plant leaf tissue by ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS)using automatic online solid phase extraction(SPE)to remove the matrix interference components in plant crude extracts was developed.The plant leaf samples were extracted twice with 1%formic acid-methanol solution,then evaporated to dry,redissolved with 70%methanol solution,and directly injected for analysis.After 23 kinds of target PFASs were purified automatically by online SPE with a WAX column,the six-way valve was switched to rinse PFASs onto an alkaline mobile phase system-compatible C18 analytical column.Then,the 23 kinds of target PFASs were separated within 16 min by gradient elution using a binary mobile phase system of methanol/water(Containing 0.4%ammonium hydroxide).Tandem mass spectrometry was performed in multiple reaction monitoring(MRM)mode for online detection of various PFASs,and quantification was carried out by internal standard method.The results of the method validation showed that satisfactory average recoveries of 23 kinds of PFASs in plant leaf samples(64.2%-125.5%),precision(relative standard deviations(RSDs)of 0.7%-12.8%),linearity(R2>0.990),and sensitivity(the detection limits(S/N=3)were in the range of 0.02-0.50 μg/kg)were achieved.Finally,this method was used to detect PFASs in the marine green tide algae(Enteromorpha prolifera)and several tree leaves,and a total of 6 kinds of PFASs were detected,in which PFBA was the main contaminant.Compared with the reported offline SPE methods,the proposed online SPE technique significantly simplified the sample pretreatment process and provided an automatic,simple,and environment-friendly method for the routine monitoring of legacy and emerging PFASs in plant tissues.
9.Effect of high intensity focused ultrasound treatment on ovarian reserve capacity in adenomyosis
Yi-Lin QIAN ; Hui-Xian CHEN ; Qing-Yue CHEN ; Dong-Qin HE ; Shu-Jing CHEN
Chinese Medical Equipment Journal 2024;45(1):67-70
Objective To explore the impact of high intensity focused ultrasound(HIFU)treatment on ovarian reserve capacity in adenomyosis.Methods Clinical data of 106 adenomyosis patients who underwent HIFU treatment from May 2019 to December 2020 at some hospital were analyzed retrospectively.All the patients were treated with HIFU,and color Doppler ultrasonography was performed before and after 6 months of treatment,respectively.The resistance index,pulsatility index,vascularization index,blood flow index,vascularization blood flow index and sinus follicle number were obtained,and serum anti-Mullerian hormone(AMH),follicle-stimulating hormone(FSH)and luteinizing hormone(luteinizing hormone)were measured.The correlation between serum AMH levels and FSH and LH levels was analyzed.SPSS 21.0 statistical software was used for data analysis.Results After 6 months of treatment serum FSH,LH,value of FSH/LH,resistance index and pulsatility index significantly decreased while vascularization index,blood flow index,vascularization blood flow index,number of sinus follicles,and serum AMH level obviously increased when compared with those before treatment,with the differences being statistically significant(P<0.05).Serum AMH levels were negatively correlated with FSH and LH levels(r=-0.448,-0.527,P<0.05)after 6 months of treatment.Conclusion HIFU treatment reduces sex hormone levels,elevates serum AMH levels and sinus follicle number,and may improve ovarian reserve capacity in patients with adenomyosis.[Chinese Medical Equipment Journal,2024,45(1):67-70]
10.Disease spectrum and pathogenic genes of inherited metabolic disorder in Gansu Province of China
Chuan ZHANG ; Ling HUI ; Bing-Bo ZHOU ; Lei ZHENG ; Yu-Pei WANG ; Sheng-Ju HAO ; Zhen-Qiang DA ; Ying MA ; Jin-Xian GUO ; Zong-Fu CAO ; Xu MA
Chinese Journal of Contemporary Pediatrics 2024;26(1):67-71
Objective To investigate the disease spectrum and pathogenic genes of inherited metabolic disorder(IMD)among neonates in Gansu Province of China.Methods A retrospective analysis was conducted on the tandem mass spectrometry data of 286 682 neonates who received IMD screening in Gansu Provincial Maternal and Child Health Hospital from January 2018 to December 2021.A genetic analysis was conducted on the neonates with positive results in tandem mass spectrometry during primary screening and reexamination.Results A total of 23 types of IMD caused by 28 pathogenic genes were found in the 286 682 neonates,and the overall prevalence rate of IMD was 0.63‰(1/1 593),among which phenylketonuria showed the highest prevalence rate of 0.32‰(1/3 083),followed by methylmalonic acidemia(0.11‰,1/8 959)and tetrahydrobiopterin deficiency(0.06‰,1/15 927).In this study,166 variants were identified in the 28 pathogenic genes,with 13 novel variants found in 9 genes.According to American College of Medical Genetics and Genomics guidelines,5 novel variants were classified as pathogenic variants,7 were classified as likely pathogenic variants,and 1 was classified as the variant of uncertain significance.Conclusions This study enriches the database of pathogenic gene variants for IMD and provides basic data for establishing an accurate screening and diagnosis system for IMD in this region.

Result Analysis
Print
Save
E-mail