1.Role of SPINK in Dermatologic Diseases and Potential Therapeutic Targets
Yong-Hang XIA ; Hao DENG ; Li-Ling HU ; Wei LIU ; Xiao TAN
Progress in Biochemistry and Biophysics 2025;52(2):417-424
Serine protease inhibitor Kazal-type (SPINK) is a skin keratinizing protease inhibitor, which was initially found in animal serum and is widely present in plants, animals, bacteria, and viruses, and they act as key regulators of skin keratinizing proteases and are involved in the regulation of keratinocyte proliferation and inflammation, primarily through the inhibition of deregulated tissue kinin-releasing enzymes (KLKs) in skin response. This process plays a crucial role in alleviating various skin problems caused by hyperkeratinization and inflammation, and can greatly improve the overall condition of the skin. Specifically, the different members of the SPINK family, such as SPINK5, SPINK6, SPINK7, and SPINK9, each have unique biological functions and mechanisms of action. The existence of these members demonstrates the diversity and complexity of skin health and disease. First, SPINK5 mutations are closely associated with the development of various skin diseases, such as Netherton’s syndrome and atopic dermatitis, and SPINK5 is able to inhibit the activation of the STAT3 signaling pathway, thereby effectively preventing the metastasis of melanoma cells, which is important in preventing the invasion and migration of malignant tumors. Secondly, SPINK6 is mainly distributed in the epidermis and contains lysine and glutamate residues, which can act as a substrate for epidermal transglutaminase to maintain the normal structure and function of the skin. In addition, SPINK6 can activate the intracellular ERK1/2 and AKT signaling pathways through the activation of epidermal growth factor receptor and protease receptor-2 (EphA2), which can promote the migration of melanoma cells, and SPINK6 further deepens its role in stimulating the migration of malignant tumor cells by inhibiting the activation of STAT3 signaling pathway. This process further deepens its potential impact in stimulating tumor invasive migration. Furthermore, SPINK7 plays a role in the pathology of some inflammatory skin diseases, and is likely to be an important factor contributing to the exacerbation of skin diseases by promoting aberrant proliferation of keratinocytes and local inflammatory responses. Finally, SPINK9 can induce cell migration and promote skin wound healing by activating purinergic receptor 2 (P2R) to induce phosphorylation of epidermal growth factor and further activating the downstream ERK1/2 signaling pathway. In addition, SPINK9 also plays an antimicrobial role, preventing the interference of some pathogenic microorganisms. Taken as a whole, some members of the SPINK family may be potential targets for the treatment of dermatological disorders by regulating multiple biological processes such as keratinization metabolism and immuno-inflammatory processes in the skin. The development of drugs such as small molecule inhibitors and monoclonal antibodies has great potential for the treatment of dermatologic diseases, and future research on SPINK will help to gain a deeper understanding of the physiopathologic processes of the skin. Through its functions and regulatory mechanisms, the formation and maintenance of the skin barrier and the occurrence and development of inflammatory responses can be better understood, which will provide novel ideas and methods for the prevention and treatment of skin diseases.
2.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
3.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
4.Comparative Study of Diffuse Large B-Cell Lymphoma and Reactive Lymphoid Hyperplasia Lymph Node Derived Mesenchymal Stem Cells.
Yu-Shuo MA ; Zhi-He LIU ; Yang SUN ; Yu-Hang ZHANG ; Wen-Qiu WANG ; Li-Sheng WANG ; Xia ZHAO
Journal of Experimental Hematology 2025;33(5):1516-1523
OBJECTIVE:
To investigate the biological behavior, differentiation ability, and differential gene expression of lymph node mesenchymal stem cells (MSCs) in patients with diffuse large B-cell lymphoma (DLBCL) and reactive lymphoid hyperplasia (RLH), providing a theoretical basis for clinical chemotherapy resistance.
METHODS:
Lymph node MSCs from patients with DLBCL and RLH were separated, passaged and cultured. The cell morphology and growth status were observed. Flow cytometry was performed to detect the immune phenotype of MSCs. The in vitro directed differentiation ability of the two types of MSCs was observed. High-throughput sequencing was used to analyze the differential gene expression and enrichment of two groups of MSCs.
RESULTS:
The lymph node MSCs of patients with DLBCL and RLH had similar cell morphology and growth characteristics, and both groups of MSCs expressed CD90, CD105, and CD73 on the cell surface. Compared with lymph node MSCs derived from patients with RLH, lymph node MSCs derived from DLBCL patients showed stronger osteogenic and adipogenic differentiation abilities. High-throughput sequencing results displayed that lymph node MSCs derived from DLBCL patients significantly upregulated some genes such as TOP2A, LFNG, GRIA3, SEC14L2, SPON2, AURKA, LRRC15, FOXD1, HOXC9, CDC20 and remarkably downregulated some genes such as TBC1D8, LDLR, PCDHAC2, POLH, PKP2, ANKRD37, DMKN, HSD11B1, ARHGAP20, PTGS1,etc.
CONCLUSION
Lymph node MSCs in DLBCL patients exhibit unique biological behavior and gene expression profiles, which may be closely related to clinical chemotherapy resistance.
Humans
;
Mesenchymal Stem Cells/cytology*
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Cell Differentiation
;
Lymph Nodes/pathology*
;
Pseudolymphoma/pathology*
5.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
6.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
7.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
8.The Role of Gut Microbiota in Male Erectile Dysfunction of Rats
Zhunan XU ; Shangren WANG ; Chunxiang LIU ; Jiaqi KANG ; Yang PAN ; Zhexin ZHANG ; Hang ZHOU ; Mingming XU ; Xia LI ; Haoyu WANG ; Shuai NIU ; Li LIU ; Daqing SUN ; Xiaoqiang LIU
The World Journal of Men's Health 2025;43(1):213-227
Purpose:
Erectile dysfunction (ED) is a common male sexual dysfunction. Gut microbiota plays an important role in various diseases. To investigate the effects and mechanisms of intestinal flora dysregulation induced by high-fat diet (HFD) on erectile function.
Materials and Methods:
Male Sprague–Dawley rats aged 8 weeks were randomly divided into the normal diet (ND) and HFD groups. After 24 weeks, a measurement of erectile function was performed. We performed 16S rRNA sequencing of stool samples. Then, we established fecal microbiota transplantation (FMT) rat models by transplanting fecal microbiota from rats of ND group and HFD group to two new groups of rats respectively. After 24 weeks, erectile function of the rats was evaluated and 16S rRNA sequencing was performed, and serum samples were collected for the untargeted metabolomics detection.
Results:
The erectile function of rats and the species diversity of intestinal microbiota in the HFD group was significantly lower, and the characteristics of the intestinal microbiota community structure were also significantly different between the two groups. The erectile function of rats in the HFD-FMT group was significantly lower than that of rats in the ND-FMT group. The characteristics of the intestinal microbiota community structure were significantly different. In the HFD-FMT group, 27 metabolites were significantly different and they were mainly involved in the several inflammation-related pathways.
Conclusions
Intestinal microbiota disorders induced by HFD can damage the intestinal barrier of rats, change the serum metabolic profile, induce low-grade inflammation and apoptosis in the corpus cavernosum of the penis, and lead to ED.
9.A novel anti-ischemic stroke candidate drug AAPB with dual effects of neuroprotection and cerebral blood flow improvement.
Jianbing WU ; Duorui JI ; Weijie JIAO ; Jian JIA ; Jiayi ZHU ; Taijun HANG ; Xijing CHEN ; Yang DING ; Yuwen XU ; Xinglong CHANG ; Liang LI ; Qiu LIU ; Yumei CAO ; Yan ZHONG ; Xia SUN ; Qingming GUO ; Tuanjie WANG ; Zhenzhong WANG ; Ya LING ; Wei XIAO ; Zhangjian HUANG ; Yihua ZHANG
Acta Pharmaceutica Sinica B 2025;15(2):1070-1083
Ischemic stroke (IS) is a globally life-threatening disease. Presently, few therapeutic medicines are available for treating IS, and rt-PA is the only drug approved by the US Food and Drug Administration (FDA) in the US. In fact, many agents showing excellent neuroprotection but no blood flow-improving activity in animals have not achieved ideal clinical efficacy, while thrombolytic drugs only improving blood flow without neuroprotection have limited their wider application. To address these challenges and meet the huge unmet clinical need, we have designed and identified a novel compound AAPB with dual effects of neuroprotection and cerebral blood flow improvement. AAPB significantly reduced cerebral infarction and neural function deficit in tMCAO rats, pMCAO rats, and IS rhesus monkeys, as well as displayed exceptional safety profiles and excellent pharmacokinetic properties in rats and dogs. AAPB has now entered phase I of clinical trials fighting IS in China.
10.The cutting-edge progress of novel biomedicines in ovulatory dysfunction therapy.
Xuzhi LIANG ; Shiyu ZHANG ; Dahai LI ; Hao LIANG ; Yueping YAO ; Xiuhong XIA ; Hang YU ; Mingyang JIANG ; Ying YANG ; Ming GAO ; Lin LIAO ; Jiangtao FAN
Acta Pharmaceutica Sinica B 2025;15(10):5145-5166
Ovulatory dysfunction (OD) is one of the main causes of infertility in women of childbearing age, which not only affects their reproductive ability, but also physical and mental health. Traditional treatment strategies have limited efficacies, and the emergence of biomedicines provides a promising alternative solution via the strategies of combining engineered design with modern advanced technology. This review explores the pathophysiological characteristics and related induction mechanisms of OD, and evaluates the current cutting-edge advances in its treatments. It emphasizes the potentials of biomedicines strategies such as hydrogels, nanoparticles and extracellular vesicles in improving therapeutic precision and efficacy. By mimicking natural physiological processes, and achieving controlled drug release, these advanced drug carriers are expected to address the challenges in ovarian microenvironment reprogramming, tissue repair, and metabolic and immune regulation. Despite the promising progress, there are still challenges in terms of biomedical complexity, differences between animal models and human physiology, and the demand for intelligent drug carriers in the therapy of OD. Future researches are mainly dedicated to developing precise personalized biomedicines in OD therapy through interdisciplinary collaboration, promoting the development of reproductive regenerative medicine.

Result Analysis
Print
Save
E-mail