1.NAD+ Ameliorates Endothelial Dysfunction in Hypertension via Activation of SIRT3/IDH2 Signal Pathway
Yumin QIU ; Xi CHEN ; Jianning ZHANG ; Zhangchi LIU ; Qiuxia ZHU ; Meixin ZHANG ; Jun TAO ; Xing WU
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):70-80
ObjectiveTo investigate the effect of nicotinamide adenine dinucleotide on vascular endothelial injury in hypertension and its molecular mechanism. MethodsC57BL/6J mice were randomly divided into saline group (Saline) and hypertension group (Ang Ⅱ, which were infused with Ang Ⅱ via subcutaneously implanted osmotic pumps), and supplemented daily with nicotinamide mononucleotide (300 mg/kg), a precursor of NAD+. Blood pressure, endothelial relaxation function and pulse wave velocity were measured after 4 weeks. Wound healing assay and adhesion assay were used to evaluate the function of endothelial cells in vitro. mtROS levels were detected by immunofluorescence staining. RT-PCR was used to detect the mRNA expression of mtDNA, SIRT3 and isocitrate dehydrogenase 2 (IDH2). 8-hydroxy-2'-deoxyguanosine levels were detected by enzyme-linked immunosorbent assay. The protein expression levels of p-eNOS, eNOS, SIRT3 and IDH2 were detected by Western blot. ResultsNMN supplementation reduced blood pressure (P<0.001) and improved endothelial function and arterial stiffness (P<0.001) in hypertensive mice. In vitro, NMN improved endothelial function in AngII-stimulated endothelial cells (P<0.05) and attenuated mitochondrial oxidative stress levels (P<0.001). Mechanistically, NMN elevated SIRT3 activity (P<0.001), which subsequently enhanced IDH activity (P<0.001) and reduced oxidative stress levels in endothelial cells. Conversely, knockdown of IDH2 would reverse the effect of SIRT3 in improving endothelial function (P<0.001). ConclusionNAD+ lowers blood pressure and enhances vascular function in hypertension by reducing the level of oxidative stress in endothelial cells through activation of the SIRT3/IDH2 signal pathway.
2.Antipyretic effects of ethanol extracts of Arisaematis Rhizoma fermented with bile from different sources.
Run ZOU ; Fa-Zhi SU ; En-Lin ZHU ; Chen-Xi BAI ; Yan-Ping SUN ; Hai-Xue KUANG ; Qiu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(7):1781-1791
This study aims to investigate the antipyretic effects and mechanisms of ethanol extracts from Arisaematis Rhizoma fermented with bile from different sources on a rat model of fever induced by a dry-yeast suspension. The rat model of fever was established by subcutaneous injection of 20% dry-yeast suspension into the rat back. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6) in the serum, as well as prostaglandin E_2(PGE_2) and cyclic adenosine monophosphate(cAMP) in the hypothalamus, were determined by ELISA. Metabolomics analysis was then performed on serum and hypothalamus samples based on UPLC-Q-TOF MS to explore the potential biomarkers and metabolic pathways. The results showed that the body temperatures of rats significantly rose 4 h after modeling. After oral administration of high-dose ethanol extracts of Arisaematis Rhizoma fermented with bovine bile(NCH) and porcine bile(ZCH), the body temperatures of rats declined(P<0.05), and the NCH group showed better antipyretic effect than the ZCH group. Additionally, compared with the model group, the NCH and ZCH groups showed lowered levels of IL-1β, IL-6, TNF-α, PGE_2, and cAMP(P<0.01). The results of serum and hypothalamus metabolomics analysis indicated that both NCH and ZCH exerted antipyretic effects by regulating phenylalanine metabolism, sphingolipid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis. Collectively, both NCH and ZCH can play an obvious antipyretic role in the rat model of dry yeast-induced fever, and the underlying mechanism might be closely associated with inhibiting inflammation and regulating metabolic disorders. Moreover, NCH demonstrates better antipyretic effect.
Animals
;
Rats
;
Male
;
Fermentation
;
Rats, Sprague-Dawley
;
Rhizome/metabolism*
;
Drugs, Chinese Herbal/chemistry*
;
Bile/chemistry*
;
Antipyretics/chemistry*
;
Fever/metabolism*
;
Cattle
;
Swine
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ethanol/chemistry*
;
Interleukin-6/blood*
;
Interleukin-1beta/blood*
3.Synthesis of active substance 3,4-dihydroxyacetophenone from traditional Chinese medicine using Escherichia coli whole-cell bioconversion of 1-(4-hydroxyphenol)-ethanol.
Xi-Wei YUAN ; Yan-Qiu TIAN ; Wen-Yu WANG ; Ya-Lun ZHANG ; De-Hong XU
China Journal of Chinese Materia Medica 2025;50(5):1187-1194
The main active compound, 3,4-dihydroxyacetophenone(3,4-DHAP), in the leaves of Ilex pubescens var. glaber, exhibits various pharmacological activities, including vasodilation and heart protection. Currently, natural extraction and chemical synthesis are the primary methods for obtaining 3,4-DHAP, but both approaches have inherent challenges. To address these problems, this study explored the whole-cell bioconversion of 1-(4-hydroxyphenol)-ethanol to 3,4-DHAP using recombinant Escherichia coli, cultivated in a green, cost-effective medium at room temperature and atmospheric pressure. Firstly, this study successfully constructed recombinant E. coli S1, which contained only the HpaBC gene, and recombinant E. coli S3, which contained both the Hped and HpaBC genes. The ability of S1 and S3 to synthesize 3,4-DHAP from their respective substrates was then evaluated through whole-cell bioconversion. Based on these results, the effects of four factors, i.e., substrate concentration, IPTG concentration, induction temperature, and transformation temperature, on the whole-cell bioconversion yield of S3 were investigated using an orthogonal experiment. The results showed that the factors influenced the yield in the following order: transformation temperature > induction temperature > IPTG concentration > substrate concentration. The optimal conditions were found to be a transformation temperature of 35 ℃, IPTG concentration of 0.1 mmol·L~(-1), induction temperature of 25 ℃, and substrate concentration of 10 mmol·L~(-1). Finally, the effect of transformation time on the yield of 3,4-DHAP was further examined under the optimal conditions. The results indicated that as the transformation time increased, the yield of 3,4-DHAP steadily increased. The highest yield of 260 mg·L~(-1) with a productivity of 17% was achieved after 72 hours of transformation. In conclusion, this study successfully achieved the whole-cell bioconversion of 1-(4-hydroxyphenol)-ethanol to 3,4-DHAP using recombinant E. coli for the first time, laying the groundwork for further optimization and development of the biosynthesis of 3,4-DHAP.
Escherichia coli/genetics*
;
Acetophenones/chemistry*
;
Ethanol/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Biotransformation
4.A new triterpenoid from Elephantopus scaber.
Zu-Xiao DING ; Hong-Xi XIE ; Lin CHEN ; Jun-Jie HAO ; Yan-Qiu LUO ; Zhi-Yong JIANG ; Shi-Kui XU
China Journal of Chinese Materia Medica 2025;50(5):1224-1230
The chemical constituents of the petroleum ether extract derived from the 90% ethanol extract of Elephantopus scaber were investigated. By silica gel column chromatography, C_(18), MCI column chromatography and semi-preparative high performance liquid chromatography, ten compounds were isolated. Their structures were identified as 3β-hydroxy-6β,7β-epoxytaraxeran-14-ene(1), 3β-hydroxyolean-12-en-28-oic acid(2), D-friedoolean-14-ene-3β,7α-diol(3), 3β-hydroxy-11α-methoxyolean-12-ene(4), 3β-hydroxyolean-11,13(18)-diene(5), 11α-hydroxy-β-amyrin(6), betulinic acid(7), 3β-hydroxy-30-norlupan-20-one(8), 6-acetonylchelerythrine(9), and 4',5'-dehydrodiodictyonema A(10) by analysis of the 1D NMR, 2D NMR, MS, and IR spectral data. Among them, compound 1 was a new triterpene and other compounds except compounds 2 and 7 were isolated from this plant for the first time.
Triterpenes/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Molecular Structure
;
Asteraceae/chemistry*
;
Chromatography, High Pressure Liquid
;
Magnetic Resonance Spectroscopy
5.Hypolipidemic effect and mechanism of Arisaema Cum Bile based on gut microbiota and metabolomics.
Peng ZHANG ; Fa-Zhi SU ; En-Lin ZHU ; Chen-Xi BAI ; Bao-Wu ZHANG ; Yan-Ping SUN ; Hai-Xue KUANG ; Qiu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(6):1544-1557
Based on the high-fat diet-induced hyperlipidemia rat model, this study aimed to evaluate the lipid-lowering effect of Arisaema Cum Bile and explore its mechanisms, providing experimental evidence for its clinical application. Biochemical analysis was used to detect serum levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), triglycerides(TG), and total cholesterol(TC) to assess the lipid-lowering activity of Arisaema Cum Bile. Additionally, 16S rDNA sequencing and metabolomics techniques were employed to jointly elucidate the lipid-lowering mechanisms of Arisaema Cum Bile. The experimental results showed that high-dose Arisaema Cum Bile(PBA-H) significantly reduced serum ALT, AST, LDL-C, TG, and TC levels(P<0.01), and significantly increased HDL-C levels(P<0.01). The effect was similar to that of fenofibrate, with no significant difference. Furthermore, Arisaema Cum Bile significantly alleviated hepatocyte ballooning and mitigated fatty degeneration in liver tissues. As indicated by 16S rDNA sequencing results, PBA-H significantly enhanced both alpha and beta diversity of the gut microbiota in the model rats, notably increasing the relative abundance of Akkermansia and Subdoligranulum species(P<0.01). Liver metabolomics analysis revealed that PBA-H primarily regulated pathways involved in arachidonic acid metabolism, vitamin B_6 metabolism, and steroid biosynthesis. In summary, Arisaema Cum Bile significantly improved abnormal blood lipid levels and liver pathology induced by a high-fat diet, regulated hepatic metabolic disorders, and improved the abundance and structural composition of gut microbiota, thereby exerting its lipid-lowering effect. The findings of this study provide experimental evidence for the clinical application of Arisaema Cum Bile and the treatment of hyperlipidemia.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Metabolomics
;
Hyperlipidemias/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Hypolipidemic Agents/pharmacology*
;
Liver/metabolism*
;
Humans
;
Alanine Transaminase/metabolism*
;
Triglycerides/metabolism*
;
Aspartate Aminotransferases/metabolism*
7.Effects of MTHFR and GGH gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate therapy in children with acute lymphoblastic leukemia.
Lin-Xiao TENG ; Qi AN ; Lei WANG ; Nan WANG ; Qing-Ling KONG ; Rui HAN ; Yuan WANG ; Lu LIU ; Yan WANG ; Shu-Mei XU ; Kun-Peng SHI ; Fang-Shan QIU ; Xi-Xi DU ; Jin-Rui SHI
Chinese Journal of Contemporary Pediatrics 2025;27(7):802-807
OBJECTIVES:
To investigate the effects of methylenetetrahydrofolate reductase (MTHFR) rs1801133 and γ-glutamyl hydrolase (GGH) rs11545078 gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate (MTX) therapy in children with acute lymphoblastic leukemia (ALL).
METHODS:
Children with ALL treated at the Xuzhou Children's Hospital of Xuzhou Medical University from January 2021 to April 2024 were selected for this study. Genotypes of MTHFR rs1801133 and GGH rs11545078 were determined using multiplex polymerase chain reaction. MTX plasma concentrations were measured by enzyme-multiplied immunoassay technique, and toxicity was graded according to the Common Terminology Criteria for Adverse Events version 5.0. The relationships between MTHFR rs1801133 and GGH rs11545078 genotypes and both MTX plasma concentrations and associated toxicities were analyzed.
RESULTS:
In the low-risk ALL group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 72 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05), and the GGH rs11545078 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with the occurrence of reduced hemoglobin (P<0.05), and the GGH rs11545078 genotype was associated with the occurrence of thrombocytopenia (P<0.05).
CONCLUSIONS
Detection of MTHFR rs1801133 and GGH rs11545078 genotypes can be used to predict increased MTX plasma concentrations and the occurrence of toxic reactions in high-dose MTX treatment of ALL, enabling timely interventions to enhance safety.
Humans
;
Methotrexate/toxicity*
;
Methylenetetrahydrofolate Reductase (NADPH2)/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood*
;
Male
;
Female
;
Child
;
Child, Preschool
;
gamma-Glutamyl Hydrolase/genetics*
;
Antimetabolites, Antineoplastic/adverse effects*
;
Infant
;
Polymorphism, Genetic
;
Adolescent
;
Genotype
;
Polymorphism, Single Nucleotide
8.Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine.
Yang WANG ; Qiu-Ju YAN ; En HU ; Yao WU ; Ruo-Qi DING ; Quan CHEN ; Meng-Han CHENG ; Xi-Ya YANG ; Tao TANG ; Teng LI
Chinese journal of integrative medicine 2025;31(7):624-634
OBJECTIVE:
To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.
METHODS:
Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg). The administration was performed by intragastric administration for 3 days. Neurological functions tests, histology staining, coagulation and haemorheology assays, and Western blot were examined. Untargeted metabolomics was employed to identify metabolites. The key metabolite was validated by enzyme-linked immunosorbent assay and immunofluorescence.
RESULTS:
XFZYD significantly alleviated neurological dysfunction in CCI model rats (P<0.01) but had no impact on coagulation function. As evidenced by Evans blue and IgG staining, XFZYD effectively prevented blood-brain barrier (BBB) disruption (P<0.05, P<0.01). Moreover, XFZYD not only increased the expression of collagen IV, occludin and zona occludens 1 but also decreased matrix metalloproteinase-9 (MMP-9) and cyclooxygenase-2 (COX-2), which protected BBB integrity (all P<0.05). Nine potential metabolites were identified, and all of them were reversed by XFZYD. Adenosine was the most significantly altered metabolite related to BBB repair. XFZYD significantly reduced the level of equilibrative nucleoside transporter 2 (ENT2) and increased adenosine (P<0.01), which may improve BBB integrity.
CONCLUSIONS
XFZYD ameliorates BBB disruption after TBI by decreasing the levels of MMP-9 and COX-2. Through further exploration via metabolomics, we found that XFZYD may exert a protective effect on BBB by regulating adenosine metabolism via ENT2.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Blood-Brain Barrier/metabolism*
;
Brain Injuries, Traumatic/metabolism*
;
Adenosine/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Rats
9.Pien Tze Huang Attenuates Cell Proliferation and Stemness Promoted by miR-483-5p in Hepatocellular Carcinoma Cells.
Li-Hui WEI ; Xi CHEN ; A-Ling SHEN ; Yi FANG ; Qiu-Rong XIE ; Zhi GUO ; Thomas J SFERRA ; You-Qin CHEN ; Jun PENG
Chinese journal of integrative medicine 2025;31(9):782-791
OBJECTIVE:
To investigate the effect of miR-483-5p on hepatocellular carcinoma (HCC) cells proliferation and stemness, as well as the attenuating effect of Pien Tze Huang (PZH).
METHODS:
Differentially expressed miRNA between HepG2 cells and hepatic cancer stem-like cells (HCSCs) were identified by a miRNA microarray assay. miR-483-5p mimics were transfected into HepG2 cells to explore the effects of miR-483-5p on cell proliferation and stemness. HepG2 cells and HCSCs were treated with PZH (0, 0.25, 0.50 and 0.75 mg/mL) to explore the effects of PZH on the proliferation and stemness, both in non-induced state and the state induced by miR-483-5p mimics.
RESULTS:
miR-483-5p was significantly up-regulated in HCSCs and its overexpression increased cell proliferation and stemness in HepG2 cells (P<0.05). PZH not only significantly inhibited proliferation in HepG2 cells, but also significantly suppressed the cell proliferation and self-renewal of HCSCs (P<0.05). The effects of miR-483-5p mimics on proliferation and stemness of HepG2 cells were partially abolished by PZH.
CONCLUSIONS
miR-483-5p promotes proliferation and enhances stemness of HepG2 cells, which were attenuated by PZH, demonstrating that miR-483-5p is a potential molecular target for the treatment of HCC and provide experimental evidence to support clinical use of PZH for patients with HCC.
Humans
;
MicroRNAs/metabolism*
;
Cell Proliferation/drug effects*
;
Liver Neoplasms/drug therapy*
;
Carcinoma, Hepatocellular/drug therapy*
;
Hep G2 Cells
;
Neoplastic Stem Cells/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Gene Expression Regulation, Neoplastic/drug effects*
10.Expert consensus on apical microsurgery.
Hanguo WANG ; Xin XU ; Zhuan BIAN ; Jingping LIANG ; Zhi CHEN ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Xi WEI ; Kaijin HU ; Qintao WANG ; Zuhua WANG ; Jiyao LI ; Dingming HUANG ; Xiaoyan WANG ; Zhengwei HUANG ; Liuyan MENG ; Chen ZHANG ; Fangfang XIE ; Di YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Yi DU ; Junqi LING ; Lin YUE ; Xuedong ZHOU ; Qing YU
International Journal of Oral Science 2025;17(1):2-2
Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.
Microsurgery/standards*
;
Humans
;
Apicoectomy
;
Contraindications, Procedure
;
Tooth Apex/diagnostic imaging*
;
Postoperative Complications/prevention & control*
;
Consensus
;
Treatment Outcome

Result Analysis
Print
Save
E-mail