1.tRF Prospect: tRNA-derived Fragment Target Prediction Based on Neural Network Learning
Dai-Xi REN ; Jian-Yong YI ; Yong-Zhen MO ; Mei YANG ; Wei XIONG ; Zhao-Yang ZENG ; Lei SHI
Progress in Biochemistry and Biophysics 2025;52(9):2428-2438
ObjectiveTransfer RNA-derived fragments (tRFs) are a recently characterized and rapidly expanding class of small non-coding RNAs, typically ranging from 13 to 50 nucleotides in length. They are derived from mature or precursor tRNA molecules through specific cleavage events and have been implicated in a wide range of cellular processes. Increasing evidence indicates that tRFs play important regulatory roles in gene expression, primarily by interacting with target messenger RNAs (mRNAs) to induce transcript degradation, in a manner partially analogous to microRNAs (miRNAs). However, despite their emerging biological relevance and potential roles in disease mechanisms, there remains a significant lack of computational tools capable of systematically predicting the interaction landscape between tRFs and their target mRNAs. Existing databases often rely on limited interaction features and lack the flexibility to accommodate novel or user-defined tRF sequences. The primary goal of this study was to develop a machine learning based prediction algorithm that enables high-throughput, accurate identification of tRF:mRNA binding events, thereby facilitating the functional analysis of tRF regulatory networks. MethodsWe began by assembling a manually curated dataset of 38 687 experimentally verified tRF:mRNA interaction pairs and extracting seven biologically informed features for each pair: (1) AU content of the binding site, (2) site pairing status, (3) binding region location, (4) number of binding sites per mRNA, (5) length of the longest consecutive complementary stretch, (6) total binding region length, and (7) seed sequence complementarity. Using this dataset and feature set, we trained 4 distinct machine learning classifiers—logistic regression, random forest, decision tree, and a multilayer perceptron (MLP)—to compare their ability to discriminate true interactions from non-interactions. Each model’s performance was evaluated using overall accuracy, receiver operating characteristic (ROC) curves, and the corresponding area under the ROC curve (AUC). The MLP consistently achieved the highest AUC among the four, and was therefore selected as the backbone of our prediction framework, which we named tRF Prospect. For biological validation, we retrieved 3 high-throughput RNA-seq datasets from the gene expression omnibus (GEO) in which individual tRFs were overexpressed: AS-tDR-007333 (GSE184690), tRF-3004b (GSE197091), and tRF-20-S998LO9D (GSE208381). Differential expression analysis of each dataset identified genes downregulated upon tRF overexpression, which we designated as putative targets. We then compared the predictions generated by tRF Prospect against those from three established tools—tRFTar, tRForest, and tRFTarget—by quantifying the number of predicted targets for each tRF and assessing concordance with the experimentally derived gene sets. ResultsThe proposed algorithm achieved high predictive accuracy, with an AUC of 0.934. Functional validation was conducted using transcriptome-wide RNA-seq datasets from cells overexpressing specific tRFs, confirming the model’s ability to accurately predict biologically relevant downregulation of mRNA targets. When benchmarked against established tools such as tRFTar, tRForest, and tRFTarget, tRF Prospect consistently demonstrated superior performance, both in terms of predictive precision and sensitivity, as well as in identifying a higher number of true-positive interactions. Moreover, unlike static databases that are limited to precomputed results, tRF Prospect supports real-time prediction for any user-defined tRF sequence, enhancing its applicability in exploratory and hypothesis-driven research. ConclusionThis study introduces tRF Prospect as a powerful and flexible computational tool for investigating tRF:mRNA interactions. By leveraging the predictive strength of deep learning and incorporating a broad spectrum of interaction-relevant features, it addresses key limitations of existing platforms. Specifically, tRF Prospect: (1) expands the range of detectable tRF and target types; (2) improves prediction accuracy through multilayer perceptron model; and (3) allows for dynamic, user-driven analysis beyond database constraints. Although the current version emphasizes miRNA-like repression mechanisms and faces challenges in accurately capturing 5'UTR-associated binding events, it nonetheless provides a critical foundation for future studies aiming to unravel the complex roles of tRFs in gene regulation, cellular function, and disease pathogenesis.
2.Relationship between osteoporosis and carotid atherosclerosis in patients with coronary heart disease aged≥60 years and prevention suggestions
Lei KANG ; Fangfang WEN ; Fei XING
Journal of Public Health and Preventive Medicine 2025;36(6):132-136
Objective To explore the relationship between osteoporosis and carotid atherosclerosis in patients with coronary heart disease aged≥60 years and analyze prevention suggestions. Methods The clinical data of 380 patients with coronary heart disease aged≥60 years who underwent various examinations in the hospital between April 2024 and April 2025 were retrospectively analyzed. According to the bone mineral density (BMD) classification criteria, the patients were divided into osteoporosis group and non-osteoporosis group. The differences in general data and carotid atherosclerosis-related indicators were compared between osteoporosis group and non-osteoporosis group. Pearson method was used to analyze the correlation between carotid atherosclerosis indicators and clinical indicators in patients with coronary heart disease aged≥60 years. According to the IMT detection thickness in patients with coronary heart disease and osteoporosis aged≥60 years were divided into IMT thickening group and IMT non-thickening group and between plaque group and non-plaque group, and the differences in BMD and bone metabolism indicators were compared. Binary logistics analysis was adopted to analyze the risk factors of IMT thickening and carotid plaque formation in patients with coronary heart disease≥60 years old. Results Age and duration of osteoporosis group TC、LDL-C、CTX、 Carotid artery IMT and carotid atherosclerosis degree were higher than those in the non osteoporosis group, the difference was statistically significant (P<0.05). BMI, OPG, OCN, 25 (OH) D, BMD, carotid artery elasticity coefficient were lower than those in the non osteoporosis group, the difference was statistically significant (P<0.05). Carotid IMT, carotid atherosclerosis degree, and carotid elasticity coefficient were significantly correlated with age, course of disease, TC, LDL-C, CTX, BMI, OPG, OCN, BMD, and 25 (OH) D of coronary heart disease patients ≥60 years old (P<0.05). OPG, OCN, BMD and 25(OH)D in IMT thickening group and plaque group were lower compared to IMT non-thickening group and non-plaque group (P<0.05) while CTX was significantly higher than that in IMT non-thickening group and non-plaque group (P<0.05). Binary logistics regression analysis showed that OPG, OCN, BMD, 25(OH)D and CTX were associated with IMT thickening in patients with coronary heart disease and osteoporosis aged≥60 years (P<0.05). OPG, OCN and BMD were associated with carotid plaque formation in patients with coronary heart disease complicated with osteoporosis aged≥60 years (P<0.05). Conclusion There is a significant correlation between osteoporosis and arteriosclerosis in patients with coronary heart disease aged≥60 years. As the bone mass decreases, the manifestations of arteriosclerosis become become more and more obvious, which needs attention and prevention.
3.Medication rules of Astragali Radix in ancient Chinese medical books based on "disease-medicine-dose" pattern.
Jia-Lei CAO ; Lü-Yuan LIANG ; Yi-Hang LIU ; Zi-Ming XU ; Xuan WANG ; Wen-Xi WEI ; He-Jia WAN ; Xing-Hang LYU ; Wei-Xiao LI ; Yu-Xin ZHANG ; Bing-Qi WEI ; Xian-Qing REN
China Journal of Chinese Materia Medica 2025;50(3):798-811
This study employed the "disease-medicine-dose" pattern to mine the medication rules of traditional Chinese medicine(TCM) prescriptions containing Astragali Radix in ancient Chinese medical books, aiming to provide a scientific basis for the clinical application of Astragali Radix and the development of new medicines. The TCM prescriptions containing Astragali Radix were retrieved from databases such as Chinese Medical Dictionary and imported into Excel 2020 to construct the prescription library. Statical analysis were performed for the prescriptions regarding the indications, syndromes, medicine use frequency, herb effects, nature and taste, meridian tropism, dosage forms, and dose. SPSS statistics 26.0 and IBM SPSS Modeler 18.0 were used for association rules analysis and cluster analysis. A total of 2 297 prescriptions containing Astragali Radix were collected, involving 233 indications, among which sore and ulcer, consumptive disease, sweating disorder, and apoplexy had high frequency(>25), and their syndromes were mainly Qi and blood deficiency, Qi and blood deficiency, Yin and Yang deficiency, and Qi deficiency and collateral obstruction, respectively. In the prescriptions, 98 medicines were used with the frequency >25 and they mainly included Qi-tonifying medicines and blood-tonifying medicines. Glycyrrhizae Radix et Rhizoma, Angelicae Sinensis Radix, Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, and Citri Reticulatae Pericarpium were frequently used. The medicines with high frequency mainly have warm or cold nature, and sweet, pungent, or bitter taste, with tropism to spleen, lung, heart, liver, and kidney meridians. In the treatment of sore and ulcer, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to promote granulation and heal up sores. In the treatment of consumptive disease, Astragali Radix was mainly used with the dose of 37.30 g and combined with Ginseng Radix et Rhizoma to tonify deficiency and replenish Qi. In the treatment of sweating disorder, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to consolidate exterior and stop sweating. In the treatment of apoplexy, Astragali Radix was mainly used with the dose of 7.46 g and combined with Glycyrrhizae Radix et Rhizoma to dispell wind and stop convulsions. Astragali Radix can be used in the treatment of multiple system diseases, with the effects of tonifying Qi and ascending Yang, consolidating exterior and stopping sweating, and expressing toxin and promoting granulation. According to the manifestations of different diseases, when combined with other medicines, Astragali Radix was endowed with the effects of promoting granulation and healing up sores, tonifying deficiency and Qi, consolidating exterior and stopping sweating, and dispelling wind and replenishing Qi. The findings provide a theoretical reference and a scientific basis for the clinical application of Astragali Radix and the development of new medicines.
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, Ancient
;
Astragalus Plant/chemistry*
;
China
;
Astragalus propinquus
4.Research progress on the regulation of Hippo -YAP signaling pathway in osteoarthritis.
Xi-Yao TAI ; De-Cai HOU ; Jiang ZHANG ; Xiao-Lei DENG
China Journal of Orthopaedics and Traumatology 2025;38(7):759-764
Osteoarthritis (OA) is the most common degenerative joint disease. Its pathological process is related to inflammatory response, chondrocyte apoptosis, and cartilage degeneration. Hippo-yes-associate protein(YAP) signaling pathway plays an important role in mediating organ size and tissue homeostasis. In recent years, the key effector protein YAP in the Hippo-YAP pathway has become a research hotspot in osteoarthritis. This article introduces the activation process of Hippo-YAP signaling pathway and the biological role of YAP. It reviews the progress of YAP in regulating osteoarthritis by influencing the proliferation and differentiation of mesenchymal stem cells and the proliferation, differentiation, and apoptosis of articular chondrocytes. It analyzed the problems encountered in YAP research in OA, introduces the research potential of YAP in other orthopedic diseases, and provides new ideas for subsequent research in Osteoarthritis.
Osteoarthritis/metabolism*
;
Humans
;
Signal Transduction
;
Protein Serine-Threonine Kinases/physiology*
;
Hippo Signaling Pathway
;
YAP-Signaling Proteins
;
Adaptor Proteins, Signal Transducing/physiology*
;
Animals
;
Transcription Factors
;
Chondrocytes/cytology*
;
Cell Cycle Proteins
5.Chronic prostatitis/chronic pelvic pain syndrome induces metabolomic changes in expressed prostatic secretions and plasma.
Fang-Xing ZHANG ; Xi CHEN ; De-Cao NIU ; Lang CHENG ; Cai-Sheng HUANG ; Ming LIAO ; Yu XUE ; Xiao-Lei SHI ; Zeng-Nan MO
Asian Journal of Andrology 2025;27(1):101-112
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a complex disease that is often accompanied by mental health disorders. However, the potential mechanisms underlying the heterogeneous clinical presentation of CP/CPPS remain uncertain. This study analyzed widely targeted metabolomic data of expressed prostatic secretions (EPS) and plasma to reveal the underlying pathological mechanisms of CP/CPPS. A total of 24 CP/CPPS patients from The Second Nanning People's Hospital (Nanning, China), and 35 asymptomatic control individuals from First Affiliated Hospital of Guangxi Medical University (Nanning, China) were enrolled. The indicators related to CP/CPPS and psychiatric symptoms were recorded. Differential analysis, coexpression network analysis, and correlation analysis were performed to identify metabolites that were specifically altered in patients and associated with various phenotypes of CP/CPPS. The crucial links between EPS and plasma were further investigated. The metabolomic data of EPS from CP/CPPS patients were significantly different from those from control individuals. Pathway analysis revealed dysregulation of amino acid metabolism, lipid metabolism, and the citrate cycle in EPS. The tryptophan metabolic pathway was found to be the most significantly altered pathway associated with distinct CP/CPPS phenotypes. Moreover, the dysregulation of tryptophan and tyrosine metabolism and elevation of oxidative stress-related metabolites in plasma were found to effectively elucidate the development of depression in CP/CPPS. Overall, metabolomic alterations in the EPS and plasma of patients were primarily associated with oxidative damage, energy metabolism abnormalities, neurological impairment, and immune dysregulation. These alterations may be associated with chronic pain, voiding symptoms, reduced fertility, and depression in CP/CPPS. This study provides a local-global perspective for understanding the pathological mechanisms of CP/CPPS and offers potential diagnostic and therapeutic targets.
Humans
;
Male
;
Prostatitis/blood*
;
Adult
;
Pelvic Pain/blood*
;
Metabolomics
;
Prostate/metabolism*
;
Middle Aged
;
Chronic Pain/blood*
;
Metabolome
;
Case-Control Studies
;
Tryptophan/blood*
;
Depression/blood*
;
Oxidative Stress/physiology*
;
Chronic Disease
;
Lipid Metabolism/physiology*
6.Effects of MTHFR and GGH gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate therapy in children with acute lymphoblastic leukemia.
Lin-Xiao TENG ; Qi AN ; Lei WANG ; Nan WANG ; Qing-Ling KONG ; Rui HAN ; Yuan WANG ; Lu LIU ; Yan WANG ; Shu-Mei XU ; Kun-Peng SHI ; Fang-Shan QIU ; Xi-Xi DU ; Jin-Rui SHI
Chinese Journal of Contemporary Pediatrics 2025;27(7):802-807
OBJECTIVES:
To investigate the effects of methylenetetrahydrofolate reductase (MTHFR) rs1801133 and γ-glutamyl hydrolase (GGH) rs11545078 gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate (MTX) therapy in children with acute lymphoblastic leukemia (ALL).
METHODS:
Children with ALL treated at the Xuzhou Children's Hospital of Xuzhou Medical University from January 2021 to April 2024 were selected for this study. Genotypes of MTHFR rs1801133 and GGH rs11545078 were determined using multiplex polymerase chain reaction. MTX plasma concentrations were measured by enzyme-multiplied immunoassay technique, and toxicity was graded according to the Common Terminology Criteria for Adverse Events version 5.0. The relationships between MTHFR rs1801133 and GGH rs11545078 genotypes and both MTX plasma concentrations and associated toxicities were analyzed.
RESULTS:
In the low-risk ALL group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 72 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05), and the GGH rs11545078 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with the occurrence of reduced hemoglobin (P<0.05), and the GGH rs11545078 genotype was associated with the occurrence of thrombocytopenia (P<0.05).
CONCLUSIONS
Detection of MTHFR rs1801133 and GGH rs11545078 genotypes can be used to predict increased MTX plasma concentrations and the occurrence of toxic reactions in high-dose MTX treatment of ALL, enabling timely interventions to enhance safety.
Humans
;
Methotrexate/toxicity*
;
Methylenetetrahydrofolate Reductase (NADPH2)/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood*
;
Male
;
Female
;
Child
;
Child, Preschool
;
gamma-Glutamyl Hydrolase/genetics*
;
Antimetabolites, Antineoplastic/adverse effects*
;
Infant
;
Polymorphism, Genetic
;
Adolescent
;
Genotype
;
Polymorphism, Single Nucleotide
7.Evaluation of inner ear malformation based on high-resolution CT and MRI.
Liangliang LIU ; Kung ZHANG ; Bing WANG ; Qi YANG ; Lei XU ; Yan HAO ; Hui XU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(1):47-56
Objective:To explore the value of high resolution computed tomography(HRCT) combined with Magnetic Resonance Imaging(MRI) in the diagnosis of inner ear malformation. Methods:HRCT and MRI data of 82 patients with inner ear malformations were analyzed retrospectively. HRCT MPR and CPR reconstruction of the inner ear structure, facial nerve canal and oblique sagittal MRI reconstruction of the internal auditory canal were performed. The inner ear malformations were classified, the conditions of facial nerve canal and cochlear nerve were evaluated. The association between inner ear malformation and cochlear nerve dysplasia were analyzed by Chi-square test with continuity correction. Results:Among the 82 patients with inner ear malformations,there were 49 cases of bilateral symmetry, 11 cases of bilateral asymmetry and 22 cases of unilateral inner ear malformations. Respectively, the most prevalent types were IP-Ⅱ(42.96%), dilatation of atrium aqueduct(18.31%) and malformations of atrium and semicircular canal 19.72%. Out of 50 cases of cochlear malformations,only 3 were isolated cochlear malformations, and the rest were accompanied by other malformations of varying degrees. In the 67 ears examined by MRI, 26(38.81%) had cochlear nerve deficiency(CND), and the incidence of CND varied with different types of inner ear malformations. Out of 142 ears, 28(19.72%) had abnormalities of the facial nerve canal. Conclusion:HRCT combined with MRI can accurately distinguish the types of inner ear malformation and effectively evaluate the facial nerve canal and cochlear nerve, and further provides the important finger and Guide value for the clinician to formulate the reasonable treatment and the operation plan.
Humans
;
Ear, Inner/diagnostic imaging*
;
Magnetic Resonance Imaging/methods*
;
Retrospective Studies
;
Female
;
Male
;
Tomography, X-Ray Computed/methods*
;
Child
;
Adolescent
;
Adult
;
Child, Preschool
;
Cochlear Nerve/diagnostic imaging*
;
Facial Nerve/abnormalities*
;
Cochlea/abnormalities*
;
Infant
;
Young Adult
8.Psychological stress-activated NR3C1/NUPR1 axis promotes ovarian tumor metastasis.
Bin LIU ; Wen-Zhe DENG ; Wen-Hua HU ; Rong-Xi LU ; Qing-Yu ZHANG ; Chen-Feng GAO ; Xiao-Jie HUANG ; Wei-Guo LIAO ; Jin GAO ; Yang LIU ; Hiroshi KURIHARA ; Yi-Fang LI ; Xu-Hui ZHANG ; Yan-Ping WU ; Lei LIANG ; Rong-Rong HE
Acta Pharmaceutica Sinica B 2025;15(6):3149-3162
Ovarian tumor (OT) is the most lethal form of gynecologic malignancy, with minimal improvements in patient outcomes over the past several decades. Metastasis is the leading cause of ovarian cancer-related deaths, yet the underlying mechanisms remain poorly understood. Psychological stress is known to activate the glucocorticoid receptor (NR3C1), a factor associated with poor prognosis in OT patients. However, the precise mechanisms linking NR3C1 signaling and metastasis have yet to be fully elucidated. In this study, we demonstrate that chronic restraint stress accelerates epithelial-mesenchymal transition (EMT) and metastasis in OT through an NR3C1-dependent mechanism involving nuclear protein 1 (NUPR1). Mechanistically, NR3C1 directly regulates the transcription of NUPR1, which in turn increases the expression of snail family transcriptional repressor 2 (SNAI2), a key driver of EMT. Clinically, elevated NR3C1 positively correlates with NUPR1 expression in OT patients, and both are positively associated with poorer prognosis. Overall, our study identified the NR3C1/NUPR1 axis as a critical regulatory pathway in psychological stress-induced OT metastasis, suggesting a potential therapeutic target for intervention in OT metastasis.
9.Core targets and immune regulatory mechanisms of Huoluo Xiaoling Pellet for promoting zebrafish fin regeneration.
Yan HUANG ; Xi CHEN ; Mengchen QIN ; Lei GAO
Journal of Southern Medical University 2025;45(3):494-505
OBJECTIVES:
To investigate the core targets and immunomodulatory mechanisms of Huoluo Xiaoling Pellet (HLXLP) for promoting tissue repair.
METHODS:
Network pharmacology and protein-protein interaction network were used to screen active components in HLXLP, the disease-related targets and the core targets, followed by GO and KEGG enrichment analyses and molecular docking to predict the pharmacological mechanisms. The toxicity of HLXLP was evaluated in zebrafish, and in a tissue regeneration model established in 3 dpf zebrafish larvae by amputating 95% of the tail fin, the effects of a formulated zebrafish embryo culture medium and 10, 20, and 40 μg/mL of aqueous extract of HLXLP on tissue regeneration was evaluated; RT-qPCR was performed to detect mRNA expressions of tissue regeneration marker genes and the core target genes. Transgenic zebrafish with fluorescently labeled macrophages and neutrophils were used to observe immune cell migration during tissue regeneration, and macrophage polarization at different stages was assessed with RT-qPCR.
RESULTS:
We identified a total of 149 intersected targets between HLXLP active components and tissue repair and 5 core targets (AKT1, IL-6, TNF-α, EGFR and STAT3). GO and KEGG analyses suggested that the effects of HLXLP were mediated primarily through the JAK-STAT pathway, adhesion junctions and positive regulation of cell migration. HLXLP was minimally toxic below 40 μg/mL and lethal at 320 μg/mL in zebrafish, and caused renal and pericardial edema and vascular defects above 80 μg/mL. In zebrafish with tail fin amputation, HLXLP significantly promoted tissue regeneration, reduced IL-6 and TNF-α and enhanced AKT1, EGFR and STAT3 mRNA expressions, modulated neutrophil and macrophage recruitment to the injury sites, and regulated M1/M2 macrophage polarization during tissue regeneration.
CONCLUSIONS
HLXLP promotes zebrafish tail fin regeneration through multiple active components, targets and pathways for immunomodulation of immune cell migration and macrophage polarization to suppress inflammation and accelerate healing.
Animals
;
Zebrafish/physiology*
;
Animal Fins/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Regeneration/drug effects*
;
Network Pharmacology
;
Signal Transduction
;
Macrophages
10.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins


Result Analysis
Print
Save
E-mail