1.Pharmacoeconomic evaluation of finerenone combined with standard treatment regimen in the treatment of diabetic nephropathy
Hai LIANG ; Runan XIA ; Panpan DI ; Mengmeng ZHAO ; Pengcheng ZHANG ; Yashen HOU ; Hong ZHANG ; Wei WU ; Miao YANG
China Pharmacy 2025;36(1):86-90
OBJECTIVE To evaluate the cost-effectiveness of finerenone combined with standard treatment regimen in the treatment of diabetic nephropathy (DN). METHODS From the perspective of healthcare service providers, a Markov model was established to simulate the dynamic changes of each stage in DN patients who received finerenone combined with the standard treatment regimen or the standard treatment regimen alone based on the phase Ⅲ clinical trial study of finerenone for DN. Markov model was used to perform the cost-effectiveness of long-term effects and the costs of the two therapies with a simulation cycle of 4 months, a simulation period of 15 years and an annual discount rate of 5%. At the same time, one-way sensitivity analysis and probability sensitivity analysis were performed, and the stability of the results was validated. RESULTS Accumulative cost of the standard treatment regimen was 579 329.54 yuan, and the accumulative utility was 8.052 4 quality-adjusted life year (QALYs); the accumulative cost of finerenone combined with the standard treatment regimen was 332 520.61 yuan, and the accumulative utility was 8.187 4 QALYs. Finerenone combined with the standard treatment regimen was more cost-effective. The results of one-way sensitivity analysis showed that dialysis status utility value, DN stage 3 utility value and DN stage 4 utility value had a great influence on the incremental cost-effectiveness ratio, but did not affect the robustness of the model. The results of probability sensitivity analysis showed that finerenone combined with the standard treatment regimen was more cost-effective with 100% probability. CONCLUSIONS For DN patients, finerenone combined with the standard treatment regimen is more cost-effective as an absolute advantage option.
2.Biomimetic nanoparticle delivery systems b ased on red blood cell membranes for disease treatment
Chen-xia GAO ; Yan-yu XIAO ; Yu-xue-yuan CHEN ; Xiao-liang REN ; Mei-ling CHEN
Acta Pharmaceutica Sinica 2025;60(2):348-358
Nanoparticle delivery systems have good application prospects in the field of precision therapy, but the preparation process of nanomaterial has problems such as short
3.Resveratrol activates extracellular-regulated protein kinase 5 signaling protein to promote proliferation of mouse MC3T3-E1 cells
Yongkang NIU ; Zhiwei FENG ; Yaobin WANG ; Zhongcheng LIU ; Dejian XIANG ; Xiaoyuan LIANG ; Zhi YI ; Hongwei ZHAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(5):908-916
BACKGROUND:The extracellular-regulated protein kinase 5(ERK5)signaling protein is essential for the survival of organisms,and resveratrol can promote osteoblast proliferation through various pathways.However,whether resveratrol can regulate osteoblast function through the ERK5 signaling protein needs further verification. OBJECTIVE:To explore the regulatory effect of ERK5 on the proliferation of MC3T3-E1 cells and related secreted proteins,and to further verify whether resveratrol can complete the above process by activating ERK5. METHODS:Mouse MC3T3-E1 preosteoblasts were treated with complete culture medium,XMD8-92(an ERK5 inhibitor),epidermal growth factor(an ERK5 activator),resveratrol alone,XMD8-92+EGF,and resveratrol+XMD8-92,respectively.Western blot assay was used to detect the expression of ERK5 and p-ERK5 proteins,proliferation-related proteins Cyclin D1,CDK4 and PCNA,and osteoblast-secreted proteins osteoprotegerin and receptor activator of nuclear factor-κB ligand in MC3T3-E1 cells of each group.The fluorescence intensity of ERK5,osteoprotegerin and receptor activator of nuclear factor-κB ligand in each group was detected by cell immunofluorescence staining,and cell proliferation was detected by EdU staining,respectively.The appropriate concentration and time of resveratrol intervention in MC3T3-E1 cells were determined by cell morphology observation and cell counting kit-8 assay. RESULTS AND CONCLUSION:The activation of ERK5 signaling protein could effectively promote the proliferation of MC3T3-E1 cells,up-regulate the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio.The appropriate concentration and time for resveratrol intervention in MC3T3-E1 cells was 5 μmol/L and 24 hours,respectively.Resveratrol could activate ERK5 signaling protein,thereby promoting osteoblast proliferation and up-regulating the osteoprotegerin/RANKL ratio.All these results indicate that resveratrol can promote the proliferation of MC3T3-E1 cells and up-regulate the osteoprotegerin/RANKL ratio by activating the ERK5 signaling protein.
4.Mechanisms by which microgravity causes osteoporosis
Dejian XIANG ; Xiaoyuan LIANG ; Shenghong WANG ; Changshun CHEN ; Cong TIAN ; Zhenxing YAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(10):2132-2140
BACKGROUND:The imbalance between bone resorption and bone formation in microgravity environments leads to significant bone loss in astronauts.Current research indicates that bone loss under microgravity conditions is the result of the combined effects of various cells,tissues,and systems. OBJECTIVE:To review different biological effects of microgravity on various cells,tissues,or systems,and summarize the mechanisms by which microgravity leads to the development of osteoporosis. METHODS:Databases such as PubMed,Web of Science,and the Cochrane Database were searched for relevant literature from 2000 to 2023.The inclusion criteria were all articles related to tissue engineering studies and basic research on osteoporosis caused by microgravity.Ultimately,85 articles were included for review. RESULTS AND CONCLUSION:(1)In microgravity environment,bone marrow mesenchymal stem cells tend to differentiate more into adipocytes rather than osteoblasts,and hematopoietic stem cells in this environment are more inclined to differentiate into osteoclasts,reducing differentiation into the erythroid lineage.At the same time,microgravity inhibits the proliferation and differentiation of osteoblasts,promotes apoptosis of osteoblasts,alters cell morphology,and reduces the mineralization capacity of osteoblasts.Microgravity significantly increases the number and activity of osteoclasts.Microgravity also hinders the differentiation of osteoblasts into osteocytes and promotes the apoptosis of osteocytes.(2)In a microgravity environment,the body experiences changes such as skeletal muscle atrophy,microvascular remodeling,bone microcirculation disorders,and endocrine disruption.These changes lead to mechanical unloading in the bone microenvironment,insufficient blood perfusion,and calcium cycle disorders,which significantly impact the development of osteoporosis.(3)At present,the mechanism by which microgravity causes osteoporosis is relatively complex.A deeper study of these physiological mechanisms is crucial to ensuring the health of astronauts during long-term space missions,and provides a theoretical basis for the prevention and treatment of osteoporosis.
5.Clinical research and characteristic analysis of patients with advanced colorectal cancer treated with Yinyang Gongji Pills and capecitabine.
Lei WANG ; Chao-Yue YAO ; Jie-Ru ZHAN ; Xiao-Xia SUN ; Zhong-Xin YU ; Xiao-Ya LIANG ; Jian WANG ; Xue GONG ; Da-Rong WEI
China Journal of Chinese Materia Medica 2025;50(5):1404-1411
Yinyang Gongji Pills have the effects of strengthening the body resistance to eliminate pathogenic factors, removing stasis, and reducing swelling, which is a commonly used traditional Chinese medicine(TCM) formula for treating intestinal accumulation. A real-world, registered, and single-arm clinical trial was conducted to observe the clinical efficacy and safety of Yinyang Gongji Pills combined with capecitabine in the treatment of advanced colorectal cancer and analyze the clinical characteristics of the patients. A total of 60 patients with advanced colorectal cancer who refused or could not tolerate standard treatment of western medicine were included in the study. They were treated with Yinyang Gongji Pills combined with capecitabine until disease progression or intolerable adverse events occurred. The main observation indicators were progression-free survival(PFS) and safety. The treatment effects of the patients under different baseline characteristics were analyzed. The clinical trial has found that the median PFS of all enrolled patients was 7.3 months, with 30.1% of patients having a PFS exceeding 12.0 months. Layered analysis showed that the median PFS of patients with the onset site being the colon and rectum were respectively 8.4 and 4.7 months. The median PFS of patients with high, medium, and low tumor burden were respectively 7.0, 4.7, and 10.8 months. The median PFS of patients with wild-type and mutant-type RAS/BRAF were respectively 7.9 and 6.9 months. The median PFS of patients with KPS scores ≥80 and ≤70 were respectively 7.9 and 6.5 months. The median PFS of patients treated with Yinyang Gongji Pills for ≥6, 3-6, and ≤3 months were respectively 8.0, 5.2, and 4.2 months. The median PFS of patients with spleen, kidney, liver, and lung syndrome differentiation in TCM were respectively 8.3, 6.7, 7.3, and 5.6 months. The median PFS of patients with TCM pathological factors including phlegm, dampness, and blood stasis were respectively 7.0, 7.3, and 6.5 months. Common adverse reactions include anemia, decreased white blood cells, decreased appetite, fatigue, and hand foot syndrome, with incidence rates being respectively 44.2%, 34.6%, 42.3%, 32.7%, and 17.3%. The results showed that the combination of Yinyang Gongji Pills and capecitabine demonstrated potential clinical efficacy and good safety in this study. The patients have clinical characteristics such as low tumor burden, onset site at the colon, KPS scores ≥ 80, long duration of oral TCM, and TCM syndrome differentiation including spleen or liver.
Humans
;
Capecitabine/adverse effects*
;
Colorectal Neoplasms/mortality*
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Middle Aged
;
Female
;
Aged
;
Adult
;
Treatment Outcome
6.Dehydrodiisoeugenol resists H1N1 virus infection via TFEB/autophagy-lysosome pathway.
Zhe LIU ; Jun-Liang LI ; Yi-Xiang ZHOU ; Xia LIU ; Yan-Li YU ; Zheng LUO ; Yao WANG ; Xin JIA
China Journal of Chinese Materia Medica 2025;50(6):1650-1658
The present study delves into the cellular mechanisms underlying the antiviral effects of dehydrodiisoeugenol(DEH) by focusing on the transcription factor EB(TFEB)/autophagy-lysosome pathway. The cell counting kit-8(CCK-8) was utilized to assess the impact of DEH on the viability of human non-small cell lung cancer cells(A549). The inhibitory effect of DEH on the replication of influenza A virus(H1N1) was determined by real-time quantitative polymerase chain reaction(RT-qPCR). Western blot was employed to evaluate the influence of DEH on the expression level of the H1N1 virus nucleoprotein(NP). The effect of DEH on the fluorescence intensity of NP was examined by the immunofluorescence assay. A mouse model of H1N1 virus infection was established via nasal inhalation to evaluate the therapeutic efficacy of 30 mg·kg~(-1) DEH on H1N1 virus infection. RNA sequencing(RNA-seq) was performed for the transcriptional profiling of mouse embryonic fibroblasts(MEFs) in response to DEH. The fluorescent protein-tagged microtubule-associated protein 1 light chain 3(LC3) was used to assess the autophagy induced by DEH. Western blot was employed to determine the effect of DEH on the autophagy flux of LC3Ⅱ/LC3Ⅰ under viral infection conditions. Lastly, the role of TFEB expression in the inhibition of DEH against H1N1 infection was evaluated in immortalized bone marrow-derived macrophage(iBMDM), both wild-type and TFEB knockout. The results revealed that the half-maximal inhibitory concentration(IC_(50)) of DEH for A549 cells was(87.17±0.247)μmol·L~(-1), and DEH inhibited H1N1 virus replication in a dose-dependent manner in vitro. Compared with the H1N1 virus-infected mouse model, the treatment with DEH significantly improved the body weights and survival time of mice. DEH induced LC3 aggregation, and the absence of TFEB expression in iBMDM markedly limited the ability of DEH to counteract H1N1 virus replication. In conclusion, DEH exerts its inhibitory activity against H1N1 infection by activating the TFEB/autophagy-lysosome pathway.
Influenza A Virus, H1N1 Subtype/genetics*
;
Animals
;
Autophagy/drug effects*
;
Humans
;
Mice
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Influenza, Human/metabolism*
;
Lysosomes/metabolism*
;
Orthomyxoviridae Infections/genetics*
;
Eugenol/pharmacology*
;
Antiviral Agents/pharmacology*
;
Virus Replication/drug effects*
;
A549 Cells
;
Male
7.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
8.Application of motor behavior evaluation method of zebrafish model in traditional Chinese medicine research.
Xin LI ; Qin-Qin LIANG ; Bing-Yue ZHANG ; Zhong-Shang XIA ; Gang BAI ; Zheng-Cai DU ; Er-Wei HAO ; Jia-Gang DENG ; Xiao-Tao HOU
China Journal of Chinese Materia Medica 2025;50(10):2631-2639
The zebrafish model has attracted much attention due to its strong reproductive ability, short research cycle, and ease of maintenance. It has always been an important vertebrate model system, often used to carry out human disease research. Its motor behavior features have the advantages of being simpler, more intuitive, and quantifiable. In recent years, it has received widespread attention in the study of traditional Chinese medicine(TCM)for the treatment of sleep disorders, neurodegenerative diseases, fatigue, epilepsy, and other diseases. This paper reviews the characteristics of zebrafish motor behavior and its applications in the pharmacodynamic verification and mechanism research of TCM extracts, active ingredients, and TCM compounds, as well as in active ingredient screening and safety evaluation. The paper also analyzes its advantages and disadvantages, with the aim of improving the breadth and depth of zebrafish and its motor behavior applications in the field of TCM research.
Zebrafish/physiology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Disease Models, Animal
;
Drug Evaluation, Preclinical/methods*
;
Animals
;
Sleep Wake Disorders/physiopathology*
;
Epilepsy/physiopathology*
;
Neurodegenerative Diseases/physiopathology*
;
Fatigue/physiopathology*
;
Behavior, Animal/physiology*
;
Motor Activity/physiology*
9.Protective effect of ethyl syringate against ulcerative colitis based on JAK2/STAT3 pathway.
Meng-di LIANG ; Yue-Run LIANG ; Jin CHENG ; Ya-Ping YANG ; Xuan XIA ; Wen-Zhe YANG ; Jie-Jie HAO
China Journal of Chinese Materia Medica 2025;50(10):2778-2786
To study the therapeutic effect and mechanisms of ethyl syringate(MD) on ulcerative colitis(UC), the MTT assay was used to detect the proliferation inhibition of RAW264.7 cells and HT-29 cells by different concentrations of MD(50, 100, 200, 400 μmol·L~(-1)). UC cell models were constructed by inducing RAW264.7 cells and HT-29 cells with lipopolysaccharide(LPS) and tumor necrosis factor-α(TNF-α). An animal model was established by inducing mice with 2.5% dextran sulfate sodium(DSS) to verify the therapeutic effect of MD on UC. A control group, a model group(LPS or TNF-α), and groups treated with different concentrations of MD(50, 100, 200, 400 μmol·L~(-1)) were set up in this study. Nitric oxide(NO) levels were measured using a NO detection kit. Intracellular reactive oxygen species(ROS) levels were assessed using a laser confocal microscope and ROS kit. Enzyme-linked immunosorbent assay(ELISA) was used to detect changes in the levels of interleukin-6(IL-6), TNF-α, interferon-γ(INF-γ), interleukin-10(IL-10), and myeloperoxidase(MPO) in cells and animal tissues. Western blot was used to detect the expression levels of phosphorylated Janus kinase 2(p-JAK2), Janus kinase 2(JAK2), phosphorylated signal transducer and activator of transcription 3(p-STAT3), signal transducer and activator of transcription 3(STAT3), zonula occludens-1(ZO-1), occludin, and claudin-1 in cells and animal tissues. The results showed that MD can improve the inflammatory response by inhibiting the production of NO and ROS and regulating the expression of inflammatory factors. It significantly reduced the disease activity index(DAI) in mice, improved the shortening of the colon, and repaired intestinal epithelial damage by inhibiting the activation of the JAK2/STAT3 pathway, thereby exerting anti-UC activity.
Animals
;
Colitis, Ulcerative/chemically induced*
;
Janus Kinase 2/genetics*
;
STAT3 Transcription Factor/genetics*
;
Mice
;
Humans
;
Signal Transduction/drug effects*
;
Male
;
RAW 264.7 Cells
;
Reactive Oxygen Species/metabolism*
;
Nitric Oxide/metabolism*
;
HT29 Cells
;
Salicylates/administration & dosage*
;
Protective Agents/administration & dosage*
10.Unveiling the renoprotective mechanisms of self-assembled herbal nanoparticles from Scutellaria barbata and Scleromitrion diffusum in acute kidney injury: A nano-TCM approach.
Lunyue XIA ; Qunfang YANG ; Kangzhe FU ; Yutong YANG ; Kaiyue DING ; Yuexue HUO ; Lanfang ZHANG ; Yunong LI ; Borong ZHU ; Peiyu LI ; Yijie HUO ; Liang SUN ; Ya LIU ; Haigang ZHANG ; Tao LIU ; Wenjun SHAN ; Lin ZHANG
Acta Pharmaceutica Sinica B 2025;15(8):4265-4284
Acute kidney injury (AKI) is a critical clinical condition characterized by rapid renal function decline, with high morbidity, mortality, and healthcare costs. Traditional Chinese medicine (TCM) has shown potential effects on mitigating oxidative stress and programmed cell death in AKI models. Scutellaria barbata D. Don (SB) and Scleromitrion diffusum (Willd.) R. J. Wang (SD), a classic TCM herbal pair exhibited anti-inflammatory and antioxidant activities. Using advanced chromatographic separation technology, we enriched the effective fractions of water extracts from SB-SD, obtaining self-assembled herbal nanoparticles (SB and SD nanoparticles, SSNPs) rich in flavonoids and terpenoids. These SSNPs demonstrated robust antioxidant properties in vitro and mitigated AKI progression in vivo by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Oral administration of SSNPs in mice resulted in absorption into the bloodstream, formation of a protein corona, reduced macrophage phagocytosis, and enhanced bioavailability and renal targeting. Furthermore, we investigated the self-assembly principle of SSNPs using representative flavonoids and terpenoids. Kinetic studies and in situ transmission electron microscopy (in situ TEM) revealed that these compounds self-assemble via supramolecular forces like hydrogen bonding and π-π interactions, forming stable nanostructures. This study elucidates the renoprotective effects and mechanisms of SB and SD, and provides a novel approach for the development of TCM-based nanomedicines, highlighting the potential of nano-TCM in AKI treatment.

Result Analysis
Print
Save
E-mail