1.Analysis of impact of host plants on quality of Taxilli Herba based on widely targeted metabolomics.
Dong-Lan ZHOU ; Zi-Shu CHAI ; Mei RU ; Fei-Ying HUANG ; Xie-Jun ZHANG ; Min GUO ; Yong-Hua LI
China Journal of Chinese Materia Medica 2025;50(12):3281-3290
This study aims to explore the impact of host plants on the quality of Taxilli Herba and provide a theoretical basis for the quality control of Taxilli Herba. The components of Taxilli Herba from three different host plants(Morus alba, Salix babylonica, and Cinnamomum cassia) and its 3 hosts(mulberry branch, willow branch, and cinnamon branch) were detected by widely targeted metabolomics based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS). Principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and Venn diagram were employed for analysis. A total of 717 metabolites were detected in Taxilli Herba from the three host plants and the branches of these host plants by UPLC-MS/MS. The results of PCA and OPLS-DA of Taxilli Herba from the three different host plants showed an obvious separation trend due to the different effects of host plants. The Venn diagram showed that there were 32, 8, and 26 characteristic metabolites in samples of Taxilli Herba from M. alba host, S. babylonica host, and C. cassia host, respectively. It was found by comparing the characteristic metabolites of Taxilli Herba and its hosts that each host transmits its characteristic components to Taxilli Herba, so that the Taxilli Herba contains the characteristic components of the host. The Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis showed that the differential metabolites of Taxilli Herba from the three hosts were mainly enriched in flavonoid biosynthesis, arginine and proline metabolism, and glycolysis/gluconeogenesis pathways. Furthermore, the differential metabolites enriching pathways of Taxilli Herba from the three hosts were different depending on the host. In a word, host plants have a significant impact on the metabolites of Taxilli Herba, and it may be an important factor for the quality of Taxilli Herba.
Metabolomics/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid
;
Tandem Mass Spectrometry
;
Quality Control
;
Salix/chemistry*
;
Cinnamomum aromaticum/metabolism*
;
Principal Component Analysis
2.Research progress on molecular mechanisms of ginsenosides in alleviating acute lung injury.
Han-Yang ZHAO ; Xun-Jiang WANG ; Qiong-Wen XUE ; Bao-Lian XU ; Xu WANG ; Shu-Sheng LAI ; Ming CHEN ; Li YANG ; Zheng-Tao WANG ; Li-Li DING
China Journal of Chinese Materia Medica 2025;50(16):4451-4470
Acute lung injury(ALI) is a critical clinical condition primarily characterized by refractory hypoxemia and infiltration of inflammatory cells in lung tissue, which can progress into a more severe form known as acute respiratory distress syndrome(ARDS). Immune cells and inflammatory cytokines play important roles in the progression of the disease. Due to its unclear pathogenesis and the lack of effective clinical treatments, ALI is associated with a high mortality rate and severely affects patients' quality of life, making the search for effective therapeutic agents particularly urgent. Ginseng Radix et Rhizoma, the dried root of the perennial herb Panax ginseng from the Araliaceae family, contains active ingredients such as saponins and polysaccharides, which possess various pharmacological effects including anti-tumor activity, immune regulation, and metabolic modulation. In recent years, studies have shown that ginsenosides exhibit notable effects in reducing inflammation, ameliorating epithelial and endothelial cell injury, and providing anticoagulant action, indicating their comprehensive role in alleviating lung injury. This review summarizes the pathogenesis of ALI and the molecular mechanisms through which ginsenosides act at different stages of ALI development. The aim is to provide a scientific reference for the development of ginsenoside-based drugs targeting ALI, as well as a theoretical basis for the clinical application of Ginseng Radix et Rhizoma in the treatment of ALI.
Ginsenosides/pharmacology*
;
Humans
;
Acute Lung Injury/immunology*
;
Animals
;
Panax/chemistry*
;
Drugs, Chinese Herbal
3.Biomechanical study of lumbar vertebra during gait cycle in adolescent idiopathic scoliosis.
Yunxin WANG ; Ping XU ; Yingsong WANG ; Yingliang LIU ; Shisen XU ; Zhi ZHAO ; Hongfei LI ; Xiaoming CHEN
Journal of Biomedical Engineering 2025;42(3):601-609
In order to investigate the mechanical response of lumbar vertebrae during gait cycle in adolescents with idiopathic scoliosis (AIS), the present study was based on computed tomography (CT) data of AIS patients to construct model of the left support phase (ML) and model of the right support phase (MR), respectively. Firstly, material properties, boundary conditions and load loading were set to simulate the lumbar vertebra-pelvis model. Then, the difference of stress and displacement in the lumbar spine between ML and MR was compared based on the stress and displacement cloud map. The results showed that in ML, the lumbar stress was mostly distributed on the convex side, while in MR, it was mostly distributed on the concave side. The stress of the two types of stress mainly gathered near the vertebral arch plate, and the stress of the vertebral arch plate was transmitted to the vertebral body through the pedicle with the progress of gait. The average stress of the intervertebral tissue in MR was greater than that in ML, and the difference of stress on the convex and convex side was greater. The displacement of lumbar vertebrae in ML decreased gradually from L1 to L5. The opposite is true in MR. In conclusion, this study can accurately quantify the stress on the lumbar spine during gait, and may provide guidance for brace design and clinical decision making.
Humans
;
Lumbar Vertebrae/diagnostic imaging*
;
Scoliosis/diagnostic imaging*
;
Adolescent
;
Gait/physiology*
;
Biomechanical Phenomena
;
Tomography, X-Ray Computed
;
Stress, Mechanical
;
Female
;
Male
4.Transzonal Projections and Follicular Development Abnormalities in Polycystic Ovary Syndrome
Di CHENG ; Yu-Hua CHEN ; Xia-Ping JIANG ; Lan-Yu LI ; Yi TAN ; Ming LI ; Zhong-Cheng MO
Progress in Biochemistry and Biophysics 2025;52(10):2499-2511
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting a substantial proportion of women of reproductive age. It is frequently associated with ovulatory dysfunction, infertility, and an increased risk of chronic metabolic diseases. A hallmark pathological feature of PCOS is the arrest of follicular development, closely linked to impaired intercellular communication between the oocyte and surrounding granulosa cells. Transzonal projections (TZPs) are specialized cytoplasmic extensions derived from granulosa cells that penetrate the zona pellucida to establish direct contact with the oocyte. These structures serve as essential conduits for the transfer of metabolites, signaling molecules (e.g., cAMP, cGMP), and regulatory factors (e.g., microRNAs, growth differentiation factors), thereby maintaining meiotic arrest, facilitating metabolic cooperation, and supporting gene expression regulation in the oocyte. The proper formation and maintenance of TZPs depend on the cytoskeletal integrity of granulosa cells and the regulated expression of key connexins, particularly CX37 and CX43. Recent studies have revealed that in PCOS, TZPs exhibit significant structural and functional abnormalities. Contributing factors—such as hyperandrogenism, insulin resistance, oxidative stress, chronic inflammation, and dysregulation of critical signaling pathways (including PI3K/Akt, Wnt/β‑catenin, and MAPK/ERK)—collectively impair TZP integrity and reduce their formation. This disruption in granulosa-oocyte communication compromises oocyte quality and contributes to follicular arrest and anovulation. This review provides a comprehensive overview of TZP biology, including their formation mechanisms, molecular composition, and stage-specific dynamics during folliculogenesis. We highlight the pathological alterations in TZPs observed in PCOS and elucidate how endocrine and metabolic disturbances—particularly androgen excess and hyperinsulinemia—downregulate CX43 expression and impair gap junction function, thereby exacerbating ovarian microenvironmental dysfunction. Furthermore, we explore emerging therapeutic strategies aimed at preserving or restoring TZP integrity. Anti-androgen therapies (e.g., spironolactone, flutamide), insulin sensitizers (e.g., metformin), and GLP-1 receptor agonists (e.g., liraglutide) have shown potential in modulating connexin expression and enhancing granulosa-oocyte communication. In addition, agents such as melatonin, AMPK activators, and GDF9/BMP15 analogs may promote TZP formation and improve oocyte competence. Advanced technologies, including ovarian organoid models and CRISPR-based gene editing, offer promising platforms for studying TZP regulation and developing targeted interventions. In summary, TZPs are indispensable for maintaining follicular homeostasis, and their disruption plays a pivotal role in the pathogenesis of PCOS-related folliculogenesis failure. Targeting TZP integrity represents a promising therapeutic avenue in PCOS management and warrants further mechanistic and translational investigation.
5.Ameliorative effect of Panax notoginseng saponins eye drops on non-proliferative diabetic retinopathy in rats
Xin SUN ; Ya-ru WANG ; Xue-mei CHENG ; Hong-yu CHEN ; Ming CHEN ; Shu-sheng LAI ; Li-li JI ; Xiao-hui WEI ; Chang-hong WANG
Acta Pharmaceutica Sinica 2024;59(5):1271-1279
Diabetic retinopathy (DR) is a diabetic ocular complication that can lead to poor vision and blindness. This experiment aimed to investigate the ameliorative effect and its mechanism of
6.Development of Nasal Continuum Minimally Invasive Surgical Robot System.
Yuan ZHOU ; Wuzhou HONG ; Le XIE ; Fan FENG ; Haiting LIANG ; Dan LUO ; Keyong LI ; Binbin LOU
Chinese Journal of Medical Instrumentation 2022;46(4):399-403
In order to improve the operation difficulties in the narrow space of the nasal maxillary sinus, the nasal continuum minimally invasive surgical robot system is designed. The ball-and-socket joints and NiTiNol tubes are used as the main body of the continuum structure to improve the degree of freedom. The hardware systems and software systems are designed. The security control policies are planned. Finally, the robot confirmed prototype experiments are conducted and the feasibility of continuum robot confirmed through master-slave control experiment and animal experiment.
Animals
;
Biomechanical Phenomena
;
Equipment Design
;
Minimally Invasive Surgical Procedures
;
Robotic Surgical Procedures
;
Robotics
;
Software
7.Film analysis algorithm of isocenter error based on Hough transform for the CyberKnife system
Wuzhou LI ; Zhitao DAI ; Fuying WAN ; Qijie SHI ; Man ZHAO ; Hong QUAN
Chinese Journal of Radiation Oncology 2021;30(4):392-396
Objective:A new algorithm based on Hough transform (HT) was proposed to improve the accuracy and stability of the film image analysis of Automatic Quality Assurance (AQA) test, and to explore the influence of the resolution of film image on the test results.Methods:Nine pairs of films were obtained for AQA modules in this study. Firstly, the median filter was used to preprocess the grayed-out film image to remove noise interference. Then, a global threshold was utilized to binarize the image. The images were edge-detected and the film edge line was extracted by Hough transform. The film image was transformed to the correct position. Finally, the edge of the field shadow circle and the shadow circle of the tungsten ball were extracted by the edge detection method and Hough transform. The radial error was finally obtained by analyzing the concentricity.Results:There was no significant difference in the accuracy between the test results yielded by the HT method and the AQA software ( P>0.05). The difference in the standard deviation of the test results was statistically significant ( P=0.027), indicating that the algorithm increased the stability while ensuring the accuracy of film analysis. Increasing the resolution of film scanning failed to significantly improve the accuracy and stability of film analysis in both two methods. Conclusions:The algorithm used in this study can eliminate the human error caused by film scanning placement while ensuring the accuracy of film analysis, providing a more stable way for the AQA test of the CyberKnife system.
8.Research on the accuracy of dynamic real-time navigation and digital guide navigation implanting techniques
ZHAO Yaqin ; LIU Aipeng ; CEN Feng ; YANG Kaiwen ; LI Yanfang ; DENG Wenzheng
Journal of Prevention and Treatment for Stomatological Diseases 2021;29(3):178-183
Objective :
To compare the accuracies of implants with dynamic real-time navigation versus digital guide navigation to provide a reference for clinical precision dental implants.
Methods:
Forty-six cases (seventy teeth) with missing teeth admitted to the Department of Stomatology, Wuzhou Red Cross Hospital from April 2018 to December 2019 were randomly divided into two groups (thirty-five teeth in each group) for dynamic real-time navigation and digital guide navigation implantation techniques. To compare the entry point, apex point, depth and angle deviation of the preoperative and postoperative position of implants in the two groups. SPSS 21.0 software was used for statistical analysis.
Results :
Dental implants were successfully placed in both groups. The deviations of apex point, depth and angle in the dynamic real-time navigation group were all smaller than those in the digital guide navigation group, and the differences were statistically significant (P < 0.05). There was no statistically significant deviation in the entry point between the two groups (P > 0.05).
Conclusion
In this study, both techniques had good clinical effects. The accuracy of dynamic real-time navigation was higher than that of digital guidance.
9.Genotype analysis of thalassemia in children with thalassemia in Wuzhou
Guodong SHI ; Yanqiong LIU ; Ying LUO ; Yongjian LI
Journal of Public Health and Preventive Medicine 2021;32(1):85-89
Objective To investigate the prevalence and genotype of thalassemia in high-risk children with thalassemia in Wuzhou, and to provide a reference for formulating strategies for the prevention and treatment of thalassemia and for reducing the incidence of thalassemia. Methods Four deletions and 3 point mutations of alpha-thalassemia and 17 point mutations of beta-thalassemia were detected and analyzed by GAP-PCR and PCR combined with reverse dot blot hybridization in children at a high risk for thalassemia in Wuzhou from 2010 to 2018. Results There were 1,421 positive cases in the first screening, and 871 cases were confirmed through genotyping, with a positive rate of 61.29%, including4 deletion types and 14 mutation types. There were 452 cases (51.89%) of α-thalassemia, 337 cases (38.69%) of β-thalassemia and 82 cases (9.41%) of combination of α-thalassemia and β-thalassemia. The common genotypes of α-thalassemia in children in Wuzhou were: --SEA/αα, --SEA/-α3.7, -α3.7/αα, --SEA/αCS αCS, αWSα/αα, --SEA/-α4.2, -α4.2/αα, and αCSα/αα. CD41-42, CD17, -28 and CD71-72 were the most common heterozygotes, while CD41-42/-28, CD41-42/IVS-2-654, and CD41-42/ CD71-72 were the most common double heterozygotes in children with β-thalassemia in Wuzhou. The most common homozygous genotypes were CD41-42 / CD41-42 and -28/-28. Conclusion In order to control thalassemia it is critical to increase investment in large-scale screening of carriers of the thalassemia mutant gene, and to prevent the birth of children with severe thalassemia.
10.LMP2-DC Vaccine Elicits Specific EBV-LMP2 Response to Effectively Improve Immunotherapy in Patients with Nasopharyngeal Cancer.
Yi ZENG ; Yong Feng SI ; Gui Ping LAN ; Zhan WANG ; Ling ZHOU ; Min Zhong TANG ; O Brien SJ ; Jiao LAN ; Xiang Yang ZHOU ; Yong Li WANG ; Juan TANG ; Zhi Xiang ZHOU ; Hai Jun DU ; Hui LIN
Biomedical and Environmental Sciences 2020;33(11):849-856
Objective:
To evaluate the safety and effectiveness of a vaccine based on latent membrane protein 2 (LMP2) modified dendritic cells (DCs) that boosts specific responses of cytotoxic T lymphocytes (CTLs) to LMP2 before and after intradermal injection in patients with nasopharyngeal carcinoma (NPC).
Methods:
DCs were derived from peripheral blood monocytes of patients with NPC. We prepared LMP2-DCs infected by recombinant adenovirus vector expressing LMP2 (rAd-LMP2). NPC patients were immunized with 2 × 10
Results:
We demonstrated that DCs derived from monocytes displayed typical DC morphologies; the expression of LMP2 in the LMP2-DCs vaccine was confirmed by immunocytochemical assay. Twenty-nine patients with NPC were enrolled in this clinical trial. The LMP2-DCs vaccine was well tolerated in all of the patients. Boosted responses to LMP2 peptide sub-pools were observed in 18 of the 29 patients with NPC. The follow-up data of 29 immunized patients from April, 2010 to April 2015 indicated a five-year survival rate of 94.4% in responders and 45.5% in non-responders.
Conclusion
In this pilot study, we demonstrated that the LMP2-DCs vaccine is safe and effective in patients with NPC. Specific CTLs responses to LMP2 play a certain role in controlling and preventing the recurrence and metastasis of NPC, which warrants further clinical testing.
Adult
;
Aged
;
Cancer Vaccines/therapeutic use*
;
China
;
Dendritic Cells/immunology*
;
Female
;
Humans
;
Immunotherapy/methods*
;
Injections, Intradermal
;
Male
;
Middle Aged
;
Nasopharyngeal Carcinoma/therapy*
;
Nasopharyngeal Neoplasms/therapy*
;
T-Lymphocytes, Cytotoxic/immunology*
;
Viral Matrix Proteins/therapeutic use*
;
Young Adult


Result Analysis
Print
Save
E-mail