1.Liuwei Dihuangwan Promote Mitophagy to Modulate Neuroinflammation and Behavioral Impairments in Rat Model of Autism Spectrum Disorder (ASD)
Pengjue HUANG ; Mingyue JIANG ; Ji WU ; Niya YIN ; Lei OUYANG ; Qinquan ZHU ; Di ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):52-60
ObjectiveTo observe the effect of Liuwei Dihuangwan on behavioral impairments in the rat model of autism spectrum disorder (ASD) and explore the mechanism of action. MethodsTwelve SD pregnant rats were intraperitoneally injected with valproic acid (VPA) (10 rats) or normal saline (2 rats), and male offspring were selected to establish the model of ASD and the control rats. Rats were randomly assigned into model, low-dose (0.75 g·kg-1) and high-dose (1.5 g·kg-1) Liuwei Dihuangwan, vitamin D (positive drug, 3.7×10-5 g·kg-1), and blank groups. Each group was administrated with the corresponding concentration of drugs or the same volume of normal saline by gavage for 2 weeks. After the intervention, the three-chamber social test was conducted to evaluate social interaction and social preference. The open field test was carried out to observe spontaneous behavior and anxiety state. Hematoxylin-eosin staining (HE) was used to observe the pathological changes of the prefrontal tissue. Transmission electron microscopy was employed to observe the ultrastructure of mitochondria in prefrontal neurons. Immunofluorescence was used to detect the expression of ionized calcium-binding adapter molecule-1 (Iba-1) in the prefrontal tissue. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Western blot was employed to assess the expression differences of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), adenosine monophosphate-activated protein kinase (AMPK), phosphorylated Unc-51-like autophagy-activating kinase 1 (p-ULK1), Unc-51-like autophagy-activating kinase 1 (ULK1), and FUN14 domain-containing protein 1 (FUNDC1). ResultsCompared with the blank group, the model group spent less time sniffing stranger 1 and stranger 2 in the three-chamber social test (P<0.01) and showed reductions in the total distance traveled, average speed, distance traveled in the central area, and time spent in the central area in the open field test (P<0.01). In addition, the model group showed extensive apoptosis of neurons, with shrunken nuclei and red-stained cytoplasm, and extensive necrosis of neurons in the prefrontal tissue, mitochondrial swelling, decreased matrix density, disrupted cristae, and autophagic lysosomes in neurons, increases in the rate of Iba-1 positive cells in the prefrontal area (P<0.01) and the levels of TNF-α and IL-6 (P<0.01), and down-regulation in the expression of p-AMPK/AMPK, p-ULK1/ULK1, and FUNDC1 (P<0.01). Compared with the model group, low-dose and high-dose Liuwei Dihuangwan and the vitamin D prolonged the time spent sniffing stranger 1 and stranger 2 in the three-chamber social test (P<0.05, P<0.01), increased the total distance traveled, average speed, distance traveled in the central area, and time spent in the central area in the open field test (P<0.05, P<0.01), restored the morphology of neurons in the prefrontal tissue, decreased the number of apoptotic cells, alleviated the swelling of mitochondria in neurons, increased the matrix density, mitigated the fragmentation and disorder of cristae, and increased the number of autophagosomes. Moreover, the drugs decreased the rate of Iba-1 positive cells in the prefrontal area (P<0.01), lowered the levels of TNF-α and IL-6 (P<0.01), and up-regulated the expression of p-AMPK/AMPK, p-ULK1/ULK1, and FUNDC1 (P<0.01). ConclusionLiuwei Dihuangwan ameliorate autism-like behaviors and reduce neuronal apoptosis and neuroinflammatory damage in the rat model of ASD by promoting mitophagy mediated by the AMPK/ULK1/FUNDC1 pathway.
2.Neuroprotective Mechanism of Yifei Xuanfei Jiangzhuo Prescription on VaD Rats Based on NF-κB/NLRP3 Signaling Pathway
Bingmao YUAN ; Wei CHEN ; Xiu LAN ; Lingfei JIANG ; Lin WU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):88-96
ObjectiveTo investigate the molecular mechanism by which Yifei Xuanfei Jiangzhuo prescription regulates the nuclear factor-κB (NF-κB)/NOD-like receptor protein 3 (NLRP3) signaling pathway to improve neuronal function in vascular dementia (VaD) rats. MethodsA VaD model was established by intermittently clamping the bilateral common carotid arteries (CCA) combined with bilateral vascular occlusion (2-VO). Eighty-four SD rats were randomly divided into a blank group, sham group, model group, piracetam group (0.2 g·kg-1), and low-, medium-, and high-dose Yifei Xuanfei Jiangzhuo prescription groups (6.09, 12.18, and 24.36 g·kg-1). Drug administration began on day 7 after surgery, once daily for 28 consecutive days. Behavioral experiments were used to evaluate learning and spatial memory. Hematoxylin-eosin (HE) staining was applied to observe pathological morphological changes in the CA1 region of the hippocampus. Transmission electron microscopy was used to examine the ultrastructure of hippocampal neurons. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect neuronal apoptosis in the CA1 region. Immunohistochemistry was performed to determine the positive expression rate of neuronal nuclear antigen (NeuN). Immunofluorescence single staining was used to assess nuclear expression of NF-κB p65 in brain tissue. Western blot was used to detect the protein expression levels of inhibitor of κB kinase (IKK), NF-κB p65, NLRP3, Caspase-1, apoptosis-associated speck-like protein (ASC), and interleukin-1β (IL-1β). ResultsCompared with the blank group, the model group showed a significant reduction in platform-crossing frequency (P0.01), aggravated hippocampal injury, a significant increase in neuronal apoptosis (P0.05), decreased NeuN positivity in the CA1 region (P0.05), increased nuclear expression of NF-κB p65 (P0.05), and significantly elevated expression of p-IKK, p-NF-κB p65, NLRP3, cleaved Caspase-1, ASC, and cleaved IL-1β (P0.05). Compared with the model group, all drug-treated groups improved learning and spatial memory in VaD rats, alleviated hippocampal pathological injury and neuronal apoptosis, and protected neuronal ultrastructure. Yifei Xuanfei Jiangzhuo prescription at doses of 12.18 and 24.36 g·kg-1 reduced hippocampal expression levels of p-IKK, p-NF-κB p65, NLRP3, Caspase-1, ASC, and cleaved IL-1β in VaD rats (P0.05), showing dose-dependent inhibition of the NF-κB/NLRP3 signaling pathway. ConclusionYifei Xuanfei Jiangzhuo prescription may exert neuroprotective effects by regulating the NF-κB/NLRP3 signaling pathway, thereby reducing neuroinflammation and inhibiting hippocampal neuronal apoptosis.
3.Yimei Baijiang Formula Treats Colitis-associated Colorectal Cancer in Mice via NF-κB Signaling Pathway
Qian WU ; Xin ZOU ; Chaoli JIANG ; Long ZHAO ; Hui CHEN ; Li LI ; Zhi LI ; Jianqin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):119-130
ObjectiveTo explore the effects of Yimei Baijiang formula (YMBJF) on colitis-associated colorectal cancer (CAC) and the nuclear factor kappaB (NF-κB) signaling pathway in mice. MethodsSixty male Balb/c mice of 4-6 weeks old were randomized into 6 groups: Normal, model, capecitabine (0.83 g
4.Neuroprotective Mechanism of Yifei Xuanfei Jiangzhuo Prescription on VaD Rats Based on NF-κB/NLRP3 Signaling Pathway
Bingmao YUAN ; Wei CHEN ; Xiu LAN ; Lingfei JIANG ; Lin WU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):88-96
ObjectiveTo investigate the molecular mechanism by which Yifei Xuanfei Jiangzhuo prescription regulates the nuclear factor-κB (NF-κB)/NOD-like receptor protein 3 (NLRP3) signaling pathway to improve neuronal function in vascular dementia (VaD) rats. MethodsA VaD model was established by intermittently clamping the bilateral common carotid arteries (CCA) combined with bilateral vascular occlusion (2-VO). Eighty-four SD rats were randomly divided into a blank group, sham group, model group, piracetam group (0.2 g·kg-1), and low-, medium-, and high-dose Yifei Xuanfei Jiangzhuo prescription groups (6.09, 12.18, and 24.36 g·kg-1). Drug administration began on day 7 after surgery, once daily for 28 consecutive days. Behavioral experiments were used to evaluate learning and spatial memory. Hematoxylin-eosin (HE) staining was applied to observe pathological morphological changes in the CA1 region of the hippocampus. Transmission electron microscopy was used to examine the ultrastructure of hippocampal neurons. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect neuronal apoptosis in the CA1 region. Immunohistochemistry was performed to determine the positive expression rate of neuronal nuclear antigen (NeuN). Immunofluorescence single staining was used to assess nuclear expression of NF-κB p65 in brain tissue. Western blot was used to detect the protein expression levels of inhibitor of κB kinase (IKK), NF-κB p65, NLRP3, Caspase-1, apoptosis-associated speck-like protein (ASC), and interleukin-1β (IL-1β). ResultsCompared with the blank group, the model group showed a significant reduction in platform-crossing frequency (P0.01), aggravated hippocampal injury, a significant increase in neuronal apoptosis (P0.05), decreased NeuN positivity in the CA1 region (P0.05), increased nuclear expression of NF-κB p65 (P0.05), and significantly elevated expression of p-IKK, p-NF-κB p65, NLRP3, cleaved Caspase-1, ASC, and cleaved IL-1β (P0.05). Compared with the model group, all drug-treated groups improved learning and spatial memory in VaD rats, alleviated hippocampal pathological injury and neuronal apoptosis, and protected neuronal ultrastructure. Yifei Xuanfei Jiangzhuo prescription at doses of 12.18 and 24.36 g·kg-1 reduced hippocampal expression levels of p-IKK, p-NF-κB p65, NLRP3, Caspase-1, ASC, and cleaved IL-1β in VaD rats (P0.05), showing dose-dependent inhibition of the NF-κB/NLRP3 signaling pathway. ConclusionYifei Xuanfei Jiangzhuo prescription may exert neuroprotective effects by regulating the NF-κB/NLRP3 signaling pathway, thereby reducing neuroinflammation and inhibiting hippocampal neuronal apoptosis.
5.Yimei Baijiang Formula Treats Colitis-associated Colorectal Cancer in Mice via NF-κB Signaling Pathway
Qian WU ; Xin ZOU ; Chaoli JIANG ; Long ZHAO ; Hui CHEN ; Li LI ; Zhi LI ; Jianqin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):119-130
ObjectiveTo explore the effects of Yimei Baijiang formula (YMBJF) on colitis-associated colorectal cancer (CAC) and the nuclear factor kappaB (NF-κB) signaling pathway in mice. MethodsSixty male Balb/c mice of 4-6 weeks old were randomized into 6 groups: Normal, model, capecitabine (0.83 g
6.Ferroptosis and osteoporosis
Cheng YANG ; Weimin LI ; Dongcheng RAN ; Jiamu XU ; Wangxiang WU ; Jiafu XU ; Jingjing CHEN ; Guangfu JIANG ; Chunqing WANG
Chinese Journal of Tissue Engineering Research 2025;29(3):554-562
BACKGROUND:It has also been confirmed that ferroptosis is closely related to a variety of musculoskeletal diseases,such as rheumatoid arthritis,osteosarcoma,and osteoporosis.The pathophysiological mechanisms of ferroptosis and osteoporosis need to be further studied and elucidated to broaden our understanding of iron metabolism and osteoporosis.It will provide research ideas for the future elucidation of new mechanisms of osteoporosis and the development of new technologies and drugs for the treatment of osteoporosis. OBJECTIVE:To provide an overview of the current status of research on ferroptosis in osteoporosis,to provide a new direction for future research on the specific molecular mechanisms of osteoporosis,and to provide more effective and better options for osteoporosis treatment strategies. METHODS:The first author used the computer to search the literature published from 2000 to 2024 in CNKI,WanFang,VIP,and PubMed databases with search terms"ferroptosis,iron metabolism,osteoporosis,osteoblast,osteoclast,bone metabolism,signal pathway,musculoskeletal,review"in Chinese and English.A total of 68 articles were finally included according to the selection criteria. RESULTS AND CONCLUSION:(1)Ferroptosis is a new type of cell death discovered in recent years,which is usually accompanied by a large amount of iron accumulation and lipid peroxidation during cell death,and its occurrence is iron-dependent.This is distinctly different from several types of cell death that are currently being hotly studied(e.g.,cellular pyroptosis,necrotic apoptosis,cuproptosis,and autophagy).(2)Intracellular iron homeostasis is manifested as a balance between iron uptake,export,utilization,and storage.The body's iron regulatory system includes systemic and intracellular regulation.The main factor of systemic regulation is hepcidin produced by hepatic secretion,and cellular regulation depends on the iron regulatory protein/iron response element system.Of course,intracellular iron homeostasis can be controlled by other factors,such as hypoxia,cytokines,and hormones.(3)Lipid peroxidation causes oxidative damage to biological membranes(plasma membrane and internal organelle membranes),lipoproteins,and other lipid-containing molecules.Polyunsaturated fatty acid-containing phospholipids are important targets of lipid peroxidation.Free polyunsaturated fatty acid is an important substrate for lipid oxidation and can bind to the phospholipid bilayer,leading to over-oxidation and thus triggering lipid apoptosis.(4)Several studies have shown that osteoblasts are overloaded with iron in different ways,resulting in the accumulation of unstable ferrous iron and the generation of reactive oxygen species and lipid peroxides,causing ferroptosis of osteoblasts and ultimately a decrease in bone formation,affecting bone homeostasis and the development of osteoporosis.(5)Osteoclasts are large multinucleated cells formed by the fusion of mononuclear macrophage cell lines or bone marrow mesenchymal stem cells induced by nuclear factor-κB ligand receptor activator,and they have the function of bone resorption.Iron ions can promote osteoclast differentiation and bone resorption through the production of intracellular lipid reactive oxygen species,while iron chelators can inhibit osteoclast formation in vitro and thus affect the occurrence and development of osteoporosis.
7.Decellularized skin matrix/polyurethane blended fibrous scaffolds promote repair of skin defects in rats
Chen WU ; Jiahui JIANG ; Dou SU ; Chen LIU ; Chao CI
Chinese Journal of Tissue Engineering Research 2025;29(4):745-751
BACKGROUND:It has been confirmed that the mixing of decellularized matrix and polymer electrospinning can not only improve the structural properties of fibers,but also preserve the biological decellularized of decellularized matrix.However,there is no relevant report on the preparation of skin tissue engineering scaffolds by electrospinning polyurethane and decellularized skin matrix. OBJECTIVE:To investigate the reparative effect of a decellularized skin matrix/polyurethane blended fibrous scaffold on rat skin defects. METHODS:Polyurethane electrospun fibrous scaffold and decellularized skin matrix/polyurethane blended fibrous scaffold were fabricated using the electrospinning technique.The fiber structure was observed under scanning electron microscope.Rat adipose mesenchymal stem cells were inoculated on two kinds of scaffolds respectively.The morphology of the scaffolds was observed under scanning electron microscope.Three full-thickness skin defects of 1 cm×1 cm were fabricated on the back of 10 SD rats.Polyurethane electrospun fibrous scaffolds(control group)and decellularized skin matrix/polyurethane blended fibrous scaffolds(experimental group)were implanted in two of the defects,and no material was implanted in the remaining defects(blank control group).The skin wound healing was observed at 1,2,and 3 weeks after operation.At 3 weeks after implantation,the wound was stained with hematoxylin and eosin and the scar area was calculated. RESULTS AND CONCLUSION:(1)Under scanning electron microscope,the two kinds of electrospun fibers were reticulated,and the rat adipose mesenchymal stem cells attached to the fibers on the two kinds of scaffolds,and the adhesion was good.(2)With the extension of the postoperative time,the skin wounds of each group gradually healed.By week 3 after the operation,the skin wounds of the experimental group and the control group were basically healed,and small ulcers could be seen on the wounds of the blank control group.Hematoxylin-eosin staining of skin wounds showed that the epidermal coverage of the wound was basically complete in the control group and the experimental group,and fibroblast growth and inflammatory cell infiltration could be seen in the dermis.In addition,the collagen fibers of the wound in the experimental group were abundant and arranged in a regular order,basically parallel to the epidermal surface.The wound epidermis of blank control group was still defective.The scar area of the experimental group was smaller than that of the other two groups(P<0.05,P<0.01).(3)These results indicate that the decellularized skin matrix/polyurethane blended fibrous scaffold can effectively repair full-thickness skin defects and improve scar formation in rats.
8.Hydrogels:role and problems in the repair of oral and maxillofacial defects
Zhixin WU ; Wenwen JIANG ; Jianhui ZHAN ; Yangshurun LI ; Wenyan REN ; Yiyu WANG
Chinese Journal of Tissue Engineering Research 2025;29(10):2178-2188
BACKGROUND:Hydrogels have become a research hotspot due to their unique advantages in the biomedical field due to their superior mechanical and biological properties.At present,related research involves tissue engineering,wound dressing and so on. OBJECTIVE:To review the advantages and properties of hydrogels and the research progress of their application in the repair of oral and maxillofacial defects,discuss the current limitations and challenges of hydrogels in application and promotion,and provide new ideas for future research directions. METHODS:Relevant literature was searched in PubMed,CNKI,and WanFang database by computer.The search terms were"hydrogel,oral and maxillofacial defects,mechanical properties,tissue engineering,wound dressing"in Chinese and"hydrogel,oral and maxillofacial defects,mechanical properties,guided tissue regeneration,wound dressing"in English.Preliminary screening was carried out by reading titles and abstracts,and articles not related to the topic of the article were excluded.According to the inclusion and exclusion criteria,108 articles were finally included for the result analysis. RESULTS AND CONCLUSION:(1)The hydrogel has good biological activity,mechanical controllability,and stimulation response.(2)Polymer,metal,and ceramic hydrogel composites have appropriate mechanical properties,biodegradability,and controlled release rate,which are suitable for maxillofacial bone tissue engineering.(3)Fibrin-based hydrogel could fill the hollow nerve conduit through the nerve defect area and promote the regeneration and growth of axons to restore the function of maxillofacial nerve.(4)Controlling the interaction between nanomaterials and hydrogels can improve the formation of muscle fiber oriented structure to promote maxillofacial muscle tissue regeneration.(5)Polysaccharide hydrogel has gradually become the first choice for repairing irregular periodontal defects due to its ability to control drug delivery,carry bioactive molecules,and combine with other materials to produce the best scaffold matching the extracellular matrix.(6)Calcium phosphate or calcium carbonate-based hydrogels can be used to fill irregular or fine tissue defects and remineralize hard tissues.The self-assembled hydrogels are simple to prepare and have good biological activity.(7)Salivary gland-derived extracellular matrix-like gel is expected to participate in the treatment of many salivary gland diseases.(8)Hydrogels can be used as wound dressings in combination with biological adhesives,acellular biomaterials,antimicrobials,antioxidants,or stem cells to treat various wounds.(9)Fibrin-based hydrogel has the most potential in the repair of oral and maxillofacial defects.It has excellent biocompatibility,flexibility,and plasticity.It can combine with cells,extracellular matrix proteins,and various growth factors,and promote the osteogenic differentiation of mesenchymal stem cells,axon regeneration and growth,angiogenesis,myotube differentiation,salivary gland tissue regeneration,and periodontal tissue regeneration.It has a broad prospect in the repair of oral and maxillofacial defects.However,its therapeutic effect depends on the function of the substance carried.The complex preparation process,its safety and long-term efficacy,and the special anatomical oral and maxillofacial structure is the problem that hinders its promotion,which also provides directions for future research.
9.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
10.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.

Result Analysis
Print
Save
E-mail