1.Methacrylated dermal extracellular matrix hydrogel promotes repair of abdominal wall defects
Zhongyu LIU ; Wenya LI ; Yonghong FAN ; Shuang LYU ; Juan PEI ; Yaqin CHEN ; Beiyu LIU ; Hongyu SUN
Chinese Journal of Tissue Engineering Research 2025;29(10):2074-2082
BACKGROUND:Synthetic polymers,such as polypropylene and polyester,used for the treatment of abdominal wall defects not only lack biodegradability and bioactivity but also fail to meet the demands of complex and irregular wounds.Therefore,finding bioactive materials with low immunogenicity and good histocompatibility has become a hot spot in the repair of abdominal wall defects. OBJECTIVE:To prepare methacryloyl modified dermal extracellular matrix hydrogel and explore its potential application in abdominal wall defect. METHODS:(1)The porcine dermis was acellular with 0.25%trypsin and 1%Triton X-100 in turn to obtain the dermal extracellular matrix.After pepsin digestion and methacrylic anhydride modification,the methacrylated dermal extracellular matrix hydrogel was formed by photocrosslinking.The microscopic morphology of the hydrogel was observed by scanning electron microscope,and its rheological properties,swelling properties and other physical and chemical properties were tested.(2)Mice fibroblasts(L929)were inoculated into methacrylated dermal extracellular matrix hydrogel to detect the cell compatibility.(3)Totally 12 SD rats were randomly divided into two groups(n=6)to create abdominal wall defect model with peritoneum preserved.The defect site of the polypropylene group was filled with polypropylene material,and the hydrogel group was filled with methacrylated dermal extracellular matrix hydrogel.The wound skin of both groups was covered with polypropylene material.The wound healing was observed and histological analysis was carried out. RESULTS AND CONCLUSION:(1)Enzymatic hydrolysis had a good decellularization effect on porcine dermis after decellularization,and the original glycosaminoglycans and collagen were well retained.Scanning electron microscope observation revealed that the dermal extracellular matrix hydrogel presented loose and porous structure.The aperture was between 70 and 120 μm.The swelling ratio was(16.88±3.24)%and the water absorption was(94.24±1.11)%.The rheological property test showed that the methacrylated dermal extracellular matrix hydrogel was stable and had shear thinning characteristics,with injectability.(2)CCK-8 assay and live/dead staining showed that methacrylated dermal extracellular matrix hydrogel had good cell compatibility.(3)The results of animal experiments showed that the skin wound healing rate of the experimental group was higher than that of the control group at 7,10,and 14 days after operation(P<0.05).Hematoxylin-eosin and Masson staining of skin and muscle tissue exhibited that compared with the polypropylene group,the skin wound epithelialization,hair follicle formation,collagen fiber arrangement,and neovascularization were better in the hydrogel group 14 days after surgery.The skin wound new tissue structure was similar to the normal tissue at 28 days after surgery,and scar hyperplasia was less.A small amount of muscle regeneration was observed on day 28 after operation.(4)The results show that the methacrylated dermal extracellular matrix hydrogel can promote wound skin healing and muscle tissue regeneration in rats with abdominal wall defect.
2.Scientific basis for acupuncture combined with neural stem cells for repairing spinal cord injury
Xiaomeng HUANG ; Zhilan ZHANG ; Wenya SHANG ; Jing HUANG ; Huilin WEI ; Bing LI ; Yafeng REN
Chinese Journal of Tissue Engineering Research 2025;29(19):4111-4121
BACKGROUND:Spinal cord injury is a neurological disorder caused by traumatic or non-traumatic events,often leading to severe functional impairment below the injured segment.In recent years,neural stem cell transplantation has been considered to have significant therapeutic potential in regulating the inflammatory response after spinal cord injury,inhibiting excessive proliferation of glial scars,and promoting nerve regeneration. OBJECTIVE:To review and discuss the potential mechanism of action of acupuncture and neural stem cell transplantation therapy in inhibiting spinal cord injury-induced secondary injury,and to delve into the scientific basis for its treatment of spinal cord injury. METHODS:PubMed,Elsevier,WanFang,and CNKI databases were searched using"spinal cord injury,acupuncture,neural stem cells,SDF-1α/CXCR4 axis"as Chinese and English search terms.Totally 96 articles were finally included.The research findings of acupuncture combined with neural stem cells in the treatment of spinal cord injury were summarized and analyzed,and the mechanism of this combination therapy in the treatment of secondary injury after spinal cord injury was summarized. RESULTS AND CONCLUSION:(1)The stromal-derived factor 1α(SDF-1α)/chemokine receptor 4(CXCR4)axis plays a crucial role in neural stem cell transplantation for spinal cord injury.This signaling mechanism not only affects neural stem cell migration,proliferation,and differentiation,but is also a key factor in determining the efficiency of stem cell homing to the injury site.Therefore,the regulation of targeting this axis is of great significance in enhancing the therapeutic effect of spinal cord injury.(2)Acupuncture,as a traditional Chinese medicine therapy,shows unique advantages in the regulation of secondary injury in spinal cord injury.It can effectively reduce secondary injury after spinal cord injury by regulating inflammatory response,inhibiting apoptosis,improving microcirculation,reducing glial scar formation,and counteracting oxidative stress.(3)Acupuncture was also able to influence the expression and function of the SDF-1α/CXCR4 axis,thereby enhancing the homing and survival ability of neural stem cells and promoting nerve regeneration and functional recovery.(4)The therapy combining acupuncture and stem cell transplantation is an innovative treatment strategy for spinal cord injury and suitable for repairing neural circuits.It combines the wisdom of traditional Chinese medicine with the advantages of modern biotechnology,providing a new treatment option for spinal cord injury patients.However,this combination therapy is still in the research and exploration stage,and its long-term efficacy and safety need to be further verified.(5)Taken together,acupuncture and neural stem cell transplantation for the treatment of spinal cord injury has great potential for clinical application,but in-depth research and optimization of treatment options are still needed.In the future,we look forward to further revealing the efficacy mechanism and optimal indications of this therapy through more clinical trials and mechanism studies,so as to bring better hope of recovery and more efficient therapeutic effects to spinal cord injury patients.
3.Hydrogel scaffolds loaded with bone marrow mesenchymal stem cells/resveratrol liposomes for traumatic brain injury treatment
Wenya CHI ; Yan YUAN ; Weilin LI ; Tongyu WU ; Yuan YU
Journal of Pharmaceutical Practice and Service 2025;43(2):67-74
Objective To prepare a thermosensitive hydrogel scaffold loaded with bone marrow mesenchymal stem cells(BMSCs) and resveratrol liposomes (RSV-LIP) to form a therapeutic unit and evaluate its treatment efficacy for traumatic brain injury (TBI). Methods BMSCs were extracted from rats, and RSV-LIP was prepared and characterized. Cell models were constructed to investigate the pharmacological effects of BMSCs combined with RSV-LIP. BMSCs and RSV-LIP were then loaded into the hydrogel, and a TBI mouse model was established to evaluate the therapeutic effects of the hydrogel. Results The RSV-LIP had a particle size of 127.8 nm, a Zeta potential of −4.9 mV, an encapsulation efficiency of 78.50%, and a drug loading content of 2.37%. Live-dead staining indicated good biocompatibility of the hydrogel. The combination of BMSCs and RSV-LIP significantly inhibited TNF-α and reduced ROS levels, promoting cell migration in scratch assays. Compared to the control group, the hydrogel group showed significantly lower mNSS scores (P<0.01), higher hanging scores (P<0.001), and reduced stepping errors (P<0.001). Conclusion The combination of BMSCs and RSV-LIP exhibited antioxidative stress, anti-inflammatory, and neurogenic cell migration-promoting effects. When loaded into a hydrogel scaffold and locally implanted, it could improve the motor and sensory functions in TBI mice.
4.Clinical Evidence Profile of Eleven Expensive Chinese Patent Medicines: A Scoping Analysis
Yajing LI ; Miaomiao LI ; Le ZHANG ; Wenya WANG ; Hui ZHAO ; Xing LIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):227-238
ObjectiveThis study employed the scoping review method to systematically retrieve and analyze the basic information and clinical research evidence of expensive Chinese patent medicines (CPMs), aiming to provide a basis for future related research and clinical applications. MethodsEight Chinese and English databases were systematically searched for the clinical research evidence on expensive CPMs. ResultsEleven expensive CPMs (Angong Niuhuang Wan, Jufang Zhibao Wan, Suhexiang Wan, Pien Tze Huang, Niuhuang Qingxin Wan, Qinggong Shoutao Wan, Compound Realgar Natural Indigo Tablets, Xihuang Wan, Dingkun Wan, Babao Wan, and Guilingji Capsules) were selected. A total of 365 related studies were included in this review, comprising 331 clinical studies (of which 291 were randomized controlled trials), 30 systematic reviews and Meta-analyses, 3 expert consensus, and 1 rapid health technology assessment. Among the 11 CPMs, 2(Angong Niuhuang Wan and Jufang Zhibao Wan) had a daily price over 500 yuan. The famous and precious Chinese medicinal materials involved included Moschus (frequency of 7), Bovisc Alculus (7), and Borneol (5). The dosage forms included pills, capsules, oral liquid, tablets, and lozenges. The diseases treated by these CPMs mainly included malignant tumors, cerebrovascular diseases, gynecological diseases, and hepatobiliary system diseases. The sample sizes of the clinical studies were mainly concentrated within the range of 51-100 cases, and the main control form was CPM + basic Western medicine treatment vs. basic Western medicine treatment. The 331 clinical studies reported a total of 44 adverse events occurred, of which 36 were determined to be adverse reactions. ConclusionThe scarcity of raw materials leads to the high prices of expensive CPMs. The difficulty of conducting clinical research and the critical and severe cases treated lead to a lack of clinical research evidence with large sample sizes. The uneven distribution of existing studies, incomplete information on medicine package, and non-standard clinical research designs remain to be addressed in the future.
5.Research progress on impact of micro/nanoplastics exposure on reproductive health
Yan HUANG ; Yuanyuan HUANG ; Yanxi ZHUO ; Yiqin LIN ; Qipeng LI ; Xiaofeng ZHENG ; Wenxiang WANG ; Yuchen LI ; Wenya SHAO ; Henggui CHEN
Journal of Environmental and Occupational Medicine 2025;42(4):490-496
Micro/nanoplastics (MNPs), recognized as emerging environmental pollutants, are widely distributed in natural environments. Due to their small particle size and significant migratory capacity, MNPs can infiltrate diverse environmental matrices, then invade and accumulate in the organism via the skin, respiration, and digestion. Recently, concerns have grown over the detrimental effects and potential toxicity of MNPs on reproductive health. This review summarized published epidemiological and toxicological studies related to MNPs exposure and their effects on reproductive health. Firstly, this review critically examined the current landscape of epidemiological evidence and found that MNPs (e.g., polystyrene, polypropylene, polyvinyl chloride, polyethylene, etc.) are present in various biological specimens from both males and females, and their presence may be associated with an increased risk of reproductive disorders. Secondly, extensive toxicological studies revealed that MNPs exposure induces reproductive health damage through mechanisms such as disrupting the microstructure of reproductive organs and altering molecular-level expressions. Oxidative stress, inflammatory responses, and apoptosis are identified as potential links between MNPs exposure and reproductive damage. Finally, this review addressed the prevalent shortcomings in existing studies and proposed future directions to tackle the challenges posed by MNPs-induced reproductive harm. These insights aim to inform strategies for safeguarding public reproductive health and ecological security, providing a scientific foundation for mitigating risks associated with MNPs pollution.
6.Sequencing and analysis of the complete mitochondrial genome of Bulinus globosus
Peijun QIAN ; Mutsaka-Makuvaza MASCELINE JENIPHER ; Chao LÜ ; Yingjun QIAN ; Wenya WANG ; Shenglin CHEN ; Andong XU ; Jingbo XUE ; Jing XU ; Xiaonong ZHOU ; Midzi NICHOLAS ; Shizhu LI
Chinese Journal of Schistosomiasis Control 2025;37(2):116-126
Objective To analyze the structural and phylogenetic characteristics of the mitochondrial genome from Bulinus globosus, so as to provide a theoretical basis for classification and identification of species within the Bulinus genus, and to provide insights into understanding of Bulinus-schistosomes interactions and the mechanisms of parasite transmission. Methods B. globosus samples were collected from the Ruya River basin in Zimbabwe. Mitochondrial DNA was extracted from B. globosus samples and the corresponding libraries were constructed for high-throughput sequencing on the Illumina NovaSeq 6000 platform. After raw sequencing data were subjected to quality control using the fastp software, genome assembly was performed using the A5-miseq and SPAdes tools, and genome annotation was conducted using the MITOS online server. Circular maps and sequence plots of the mitochondrial genome were generated using the CGView and OGDRAW software, and the protein conservation motifs and structures were analyzed using the TBtools software. Base composition and codon usage bias were analyzed and visualized using the software MEGA X and the ggplot2 package in the R software. In addition, a phylogenetic tree was created in the software MEGA X after sequence alignment with the software MAFFT 7, and visualized using the software iTOL. Results The mitochondrial genome of B. globosus was a 13 730 bp double-stranded circular molecule, containing 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and 13 protein-coding genes, with a marked AT preference. The mitochondrial genome composition of B. globosus was similar to that of other species within the Bulinus genus. Phylogenetic analysis revealed that the complete mitochondrial genome sequence of B. globosus was clustered with B. truncatus, B. nasutus, and B. ugandae into the same evolutionary clade, and gene superfamily analysis showed that the metabolism-related proteins of B. globosus were highly conserved, notably the cytochrome c oxidase family, which showed a significant consistency. Conclusions This is the first whole mitochondrial genome sequencing to decode the compositional features of the mitochondrial genome of B. globosus from Zimbabwe and its evolutionary relationship within the Bulinus genus, which provides important insights for further understanding of the phylogeny and mitochondrial genome characteristics of the Bulinus genus.
7.Study on the anti-hepatitis mechanism of Abrus pulchellus subsp. cantoniensis (Hance) Verdc. and Abrus pulchellus subsp. mollis (Hance) Verdc. based on serum pharmacochemistry and network pharmacology
Qiaowen ZHOU ; Xue WANG ; Mingjuan HUANG ; Li LI ; Wenya CHEN ; Zhengtao WANG ; Zijia ZHANG ; Lanlan FAN
China Pharmacy 2025;36(22):2772-2777
OBJECTIVE To compare the anti-hepatitis mechanisms of Abrus pulchellus subsp. cantoniensis (Hance) Verdc. (AC) and Abrus pulchellus subsp. mollis(Hance) Verdc. (AM). METHODS SD rats were randomly divided into blank group, AC- treated group, and AM-treated group, with each group consisting of 10 rats. The rats’ orbital venous blood was collected at 5, 15, 30 minutes, and 1, 1.5, 2, 4, 6, 8, 12 hours after gavage administration of 24 g/kg of the corresponding drug (calculated by crude drug) or water, respectively. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry technology was utilized to identify the prototype components present in the serum. The network pharmacology method was adopted to predict the anti-hepatitis active components, key targets, and signaling pathways of AC and AM. Additionally, molecular docking technology was utilized to verify the binding activity of the core active components with key targets. RESULTS A total of 35 prototype components migrating to the blood of AC and AM were identified in the serum of administered rats, among which 24 were common components. The active components in AC, such as acetylanguidine, physcion, soyasaponin A3 and soyasaponin Ⅰ, as well as those in AM, including vicenin 3, acetylanguidine,soyasaponin Ⅰ and schaftoside, all acted on key targets such as steroid receptor coactivator, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha, epidermal growth factor receptor (EGFR), and protein kinase B1(Akt1). These components modulated pathways in cancer, EGFR tyrosine kinase inhibitor resistance, and the phosphoinositide 3-kinase (PI3K) -Akt pathway, thereby exerting anti-hepatitis effects. Furthermore, the binding energies between these active components and their key targets were all less than -5 kJ/mol. CONCLUSIONS There are differences in the active components of AC and AM against hepatitis, but their mechanisms of action are similar. Both may exert their anti-hepatitis effects through pathways in cancer, EGFR tyrosine kinase inhibitor resistance, and the PI3K-Akt pathway.
8.Evaluation methods for the rehabilitation efficacy of bidirectional closed-loop motor imagery brain-computer interface active rehabilitation training systems.
He PAN ; Peng DING ; Fan WANG ; Tianwen LI ; Lei ZHAO ; Wenya NAN ; Anmin GONG ; Yunfa FU
Journal of Biomedical Engineering 2025;42(3):431-437
The bidirectional closed-loop motor imagery brain-computer interface (MI-BCI) is an emerging method for active rehabilitation training of motor dysfunction, extensively tested in both laboratory and clinical settings. However, no standardized method for evaluating its rehabilitation efficacy has been established, and relevant literature remains limited. To facilitate the clinical translation of bidirectional closed-loop MI-BCI, this article first introduced its fundamental principles, reviewed the rehabilitation training cycle and methods for evaluating rehabilitation efficacy, and summarized approaches for evaluating system usability, user satisfaction and usage. Finally, the challenges associated with evaluating the rehabilitation efficacy of bidirectional closed-loop MI-BCI were discussed, aiming to promote its broader adoption and standardization in clinical practice.
Brain-Computer Interfaces
;
Humans
;
Imagination/physiology*
;
Imagery, Psychotherapy/methods*
9.Advances in research on biomaterials and stem cell/exosome-based strategies in the treatment of traumatic brain injury.
Wenya CHI ; Yingying HE ; Shuisheng CHEN ; Lingyi GUO ; Yan YUAN ; Rongjie LI ; Ruiyao LIU ; Dairan ZHOU ; Jianzhong DU ; Tao XU ; Yuan YU
Acta Pharmaceutica Sinica B 2025;15(7):3511-3544
Traumatic brain injury (TBI) is intricately linked to the most severe clinical manifestations of brain damage. It encompasses dynamic pathological mechanisms, including hemodynamic disorders, excitotoxic injury, oxidative stress, mitochondrial dysfunction, inflammation, and neuronal death. This review provides a comprehensive analysis and summary of biomaterial-based tissue engineering scaffolds and nano-drug delivery systems. As an example of functionalized biomaterials, nano-drug delivery systems alter the pharmacokinetic properties of drugs. They provide multiple targeting strategies relying on factors such as morphology and scale, magnetic fields, pH, photosensitivity, and enzymes to facilitate the transport of therapeutics across the blood-brain barrier and to promote selective accumulation at the injury site. Furthermore, therapeutic agents can be incorporated into bioscaffolds to interact with the biochemical and biophysical environment of the brain. Bioscaffolds can mimic the extracellular matrix environment, regulate cellular interactions, and increase the effectiveness of local treatments following surgical interventions. Additionally, stem cell-based and exosome-dominated extracellular vesicle carriers exhibit high bioreactivity and low immunogenicity and can be used to design therapeutic agents with high bioactivity. This review also examines the utilization of endogenous bioactive materials in the treatment of TBI.
10.Microbiome, metabolome, and transcriptome analyses in esophageal squamous cell carcinoma: insights into immune modulation by F. nucleatum.
Xue ZHANG ; Jing HAN ; Yudong WANG ; Li FENG ; Zhisong FAN ; Yu SU ; Wenya SONG ; Lan WANG ; Long WANG ; Hui JIN ; Jiayin LIU ; Dan LI ; Guiying LI ; Yan LIU ; Jing ZUO ; Zhiyu NI
Protein & Cell 2025;16(6):491-496

Result Analysis
Print
Save
E-mail